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”My computer is too slow”

We now have access to very large datasets with many rows.
We may have tens of millions of individuals with multiple rows
per individual.
Fitting statistical models to large datasets can be frustrating
slow.
Applied statisticians / epidemiologists reluctant to leave they
trusted software (R, SAS, Stata).
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Aim

This work aims to bring speed improvements when fitting
statistical models in Stata

Almost invisible to the analyst.
Simple to implement for those developing the Stata commands.

The speed improvements are mainly due to using the Jax
module within Python to,

1 Make use of automatic differentiation.
2 Provide fast compiled functions able to use multiple CPUs.
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Where this is going?
Use new optimizer, mlad rather than ml.
Using Python to do some of the heavy computational work when
fitting models - using multiple CPUs.
Using automatic differentiation to avoid having to do the maths
and programming to get Gradient and Hessian functions.

1,000,000 observations
timer on 1
strcs x1-x10, df(5) tvc(x1 x2 x3 x4 x5) dftvc(3)
timer off 1

timer on 2
strcs x1-x10, df(5) tvc(x1 x2 x3 x4 x5) dftvc(3) python
timer off 2

timer list
1: 2822.69 / 1 = 2822.6860
2: 110.56 / 1 = 110.5610

di 1 - 110.56/2822.69
0.96083169
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Making more use of multiple CPUs

Stata BE or Stata SE
strcs x1-x10, df(5) tvc(x1 x2 x3 x4 x5) dftvc(3)
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Maximum-likelihood estimation

Stata has an excellent optimizer (ml) to estimate model
parameters.
Used in most of Stata’s in-built model estimation commands.
Used in most of user written model estimation commands.
However, for complex models and large datasets estimation can
be slow.
Can invest in faster computer and/or Stata MP.
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Estimation is an iterative process

Maximize the log-likelihood
β̂ = argmax

β
`n(β|Y ,X )

Newton-Raphson
β̂k+1 = β̂k + H

(
β̂k

)−1
S
(
β̂k

)
β̂k - 1× p vector of parameters
S
(
β̂k

)
- 1× p Score (Gradient) vector

H
(
β̂k

)
- p × p Hessian matrix
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Automatic Differentiation

S
(
β̂k

)
= ∂`n(β|Y ,X )

∂β
H
(
β̂k

)
= ∂2`n(β|Y ,X )

∂2β

Obtaining S
(
β̂k

)
and H

(
β̂k

)
can be computationally intensive.

Automatic differentiation (AD) transforms code for one function
into code for the derivative of the function
Much, much faster than numerical integration (d0, lf0, gf0).
In simple terms, AD is fast and you don’t have to do the maths.
Performed at compilation stage to give fast complied machine
code.
No AD procedure in Stata, but several in Python.

Paul C Lambert Stata and Python August 6th 2021 9



Jax (jax.readthedocs.io/en/latest/)

Jax is a google ”research project” for Python.
It does lots, the main things of interest here

Automatic differentiation
Automatic vectorization of functions
Fast ”Just-in-time” compilation
The fast, compiled code (XLA) will run on multiple CPUs
(GPUs and TPUs).

Active development with frequent updates / bug fixes.

Good support for Linux and macOS (easy to install)
Less Windows support (need to build from source)
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A new optimizer
I have written an optimizer for Stata, mlad.
Rather than a Stata program to define the likelihood the user
needs to write a Python function.
Automatic differentiation is used so the gradient and Hessian
functions are calculated automatically using Jax.
Likelihood, gradient and Hessian functions are compiled so fast
and can make use of multiple processors.
Makes use of Stata’s ml command for setup, updating
parameters and assessing convergence.
All results are returned in Stata in standard ml format, so
standard post-estimation tools are available.

d0 → d2
We are writing a d0 evaluator (in Python) and getting a d2 evaluator
for free.
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What is mlad doing?
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My Computer

Speed will vary between computers.
All code in this talk is run on the following

AMD Ryzen 7 3700X - 8 Cores (2 threads per core)
CPU speed 4200 MHz
Ram 32Gb
Running Linux Mint 20.1 Cinnamon
Cost ≈ £650
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Example: A Weibull model

S(t) = exp(−λtγ) h(t) = λγtγ−1

ln ` =
N∑

i=1
di ln [h(ti)] + ln [S(ti)]

Both λ and γ can depend on covariates.

ln(λ) = X1β

ln(γ) = X2α
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A Weibull model in Stata using ml (d0)

Stata d0
program weib_ll_d0

version 16.1
args todo b lnf g H

tempvar lnlam lngam
mleval ‘lnlam’ = ‘b’, eq(1)
mleval ‘lngam’ = ‘b’, eq(2)

mlsum ‘lnf’ = _d*(‘lnlam’ + ‘lngam’ + (exp(‘lngam’) - 1)*ln(_t)) - ///
exp(‘lnlam’)*_tˆ(exp(‘lngam’))

if (‘todo’==0 | ‘lnf’>=.) exit
end

Using ml
ml model d0 weib_ll_d0 (lnlam: x1 x2 x3 x4 x5 x6 x7 x8 x9 x10) ///

(lngam: x1 x2 x3 x4 x5 x6 x7 x8 x9 x10) ///
, maximize
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A Weibull model using mlad

Python file: weib ll.py
import jax.numpy as jnp
import mladutil as mu

def python_ll(beta,X,wt,M):
lnlam = mu.linpred(beta,X,1)
lngam = mu.linpred(beta,X,2)
gam = jnp.exp(lngam)

return(jnp.sum(M["d"]*(lnlam + lngam + (gam - 1)*jnp.log(M["t"])) -
jnp.exp(lnlam)*M["t"]**(gam)))

Using mlad
mlad (lnlam: x1 x2 x3 x4 x5 x6 x7 x8 x9 x10) ///

(lngam: x1 x2 x3 x4 x5 x6 x7 x8 x9 x10) ///
,llfile(weib_ll) ///
othervars(_t _d) othervarnames(t d)

This is a d2 evaluator!!
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Weibull Model Compare Times

Simulate 10 Million observations, 10 covariates for each linear
predictor.
Parameter estimates and standard errors identical.

Method Time Calls to program
Stata ml d0 8762 seconds 3208

Stata mlad 49 seconds 22
Stata ml d2 136 seconds 22
Stata ml lf0 281 seconds 79
Stata streg 207 seconds 33
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More Examples

I have tried various examples to test the speed improvements
and will describe some of these below.
All run on my desktop (8 processors - 2 threads per core).
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Example 1: Interval censoring
Stata now has stintreg to fit models to interval censored data.
Implemented as lf0; some potential to improve speed.

Python file: weib ic ll
import jax.numpy as jnp
import mladutil as mu

def python_ll(beta, X, wt, M):
lam = jnp.exp(mu.linpred(beta,X,1))
gam = jnp.exp(mu.linpred(beta,X,2))

lli = (jnp.where(M["ctype"]==1,jnp.log(mu.weibdens(M["ltime"],lam,gam)),0) +
jnp.where(M["ctype"]==2,jnp.log(mu.weibsurv(M["ltime"],lam,gam)),0) +
jnp.where(M["ctype"]==3,jnp.log(1 - mu.weibsurv(M["rtime"],lam,gam)),0) +
jnp.where(M["ctype"]==4,jnp.log(mu.weibsurv(M["ltime"],lam,gam)-mu.weibsurv(M["rtime"],lam,gam)),0))
return(jnp.sum(wt*lli))

Stata
mlad (ln_lambda: = ‘covlist’, ) (lngamma: = ‘gcovlist’),

othervars(ctype ltime rtime) llfile(weib_ic_ll)
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Interval censoring: Compare Speeds

10 covariate for log(λ)
2 covariates for log(γ)

Sample Size mlad stintreg % improvement
1,000 0.7 0.1 -474.2

10,000 0.7 0.5 -42.5
50,000 0.9 2.4 61.7

100,000 1.3 4.4 71.2
250,000 2.1 11.8 81.9
500,000 3.8 26.5 85.9

1,000,000 6.8 50.9 86.7
5,000,000 31.1 241.3 87.1

10,000,000 59.7 450.0 86.7

Paul C Lambert Stata and Python August 6th 2021 20



Interval censoring: Compare Speeds

10 covariate for log(λ)
2 covariates for log(γ)

Sample Size mlad stintreg % improvement
1,000 0.7 0.1 -474.2

10,000 0.7 0.5 -42.5
50,000 0.9 2.4 61.7

100,000 1.3 4.4 71.2
250,000 2.1 11.8 81.9
500,000 3.8 26.5 85.9

1,000,000 6.8 50.9 86.7
5,000,000 31.1 241.3 87.1

10,000,000 59.7 450.0 86.7

Paul C Lambert Stata and Python August 6th 2021 20



Example 2: Cure Models
My first Stata command was for cure models in the relative
survival framework, strsmix.

S(t) = S∗(t) [π + (1− π)Su(t)]
This was an lf0 command.

Python likelihood file
import jax.numpy as jnp
import mladutil as mu

def python_ll(beta, X, wt, M):
pi = mu.invlogit(mu.linpred(beta1,X,1))
lam = jnp.exp(mu.linpred(beta2,X,2))
gam = jnp.exp(mu.linpred(beta3,X,3))

ftc = mu.weibdens(t,lam,gam)
Stc = mu.weibsurv(t,lam,gam)
ht = (1-pi)*(ftc)/(pi + (1-pi)*(Stc))
St = (pi + (1-pi)*(Stc))

return(jnp.sum(wt*(d*jnp.log(rate + ht) + jnp.log(St))))
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Cure Models: Compare Speeds

10 covariates for cure proportion and Weibull λ parameter,
constant γ parameter.

Sample Size mlad strsmix % improvement
1,000 1.0 0.3 -208.9

10,000 1.0 2.3 55.0
50,000 1.6 8.1 79.6

100,000 2.4 17.8 86.7
250,000 4.4 43.6 89.8
500,000 8.5 84.1 89.9

1,000,000 15.1 160.7 90.6
2,500,000 40.4 444.2 90.9
5,000,000 75.3 838.0 91.0

10,000,000 150.6 1730.4 91.3
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Example 3: Splines for the log hazard function

We fit models of the following form,

ln [h(t)] = ln [s(ln(t)|γ, k0)] + βX

s(ln(t)|γ, k0) is a restricted cubic spline function.
The log-likelihood requires numerical integration

`i = di ln [h(ti)]−
∫ ti

t0i
h(u)du

Can be fitted in Stata using stgenreg (d0), strcs (gf2),
merlin (gf2)
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Splines on the log hazard scale

Python likelihood file
import jax.numpy as jnp
from jax import vmap
import mladutil as mu

def python_ll(beta,X,wt,M,Nnodes):
## Parameters
xb = mu.linpred(beta,X,1)
xbrcs = mu.linpred(beta,X,2)

## hazard function
def rcshaz(t):

vrcsgen = vmap(mu.rcsgen_beta,(0,None,None))
return(jnp.exp(vrcsgen(jnp.log(t),M["knots"][0],beta2) + xb))

## cumulative hazard
cumhaz = mu.vecquad_gl(rcshaz,M["t0"],M["t"],Nnodes,())

return(jnp.sum(wt*(M["d"]*(xb + xbrcs) - cumhaz)))
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Splines on the log hazard scale: Times
Proportional hazards model, 10 covariates.
Restricted cubic spline with 6 knots for log baseline hazard.

Sample Size mlad stgenreg strcs merlin
1,000 0.6 4.9 (87.8%) 0.4 (-50%) 1.9 (68.4%)

10,000 0.9 48 (98.1%) 2.4 (62.5%) 11 (91.7%)
50,000 2.2 193 (98.9%) 12 (82.0%) 86 (97.5%)

100,000 3.4 452 (99.2%) 27 (87.2%) 178 (98.1%)
250,000 7.4 1,125 (99.3%) 69 (89.2%) 441 (98.3%)
500,000 14.2 2,329 (99.4%) 139 (89.8%) 898 (98.4%)

1,000,000 26.4 4,694 (99.4%) 285 (90.7%) 1789 (98.5%)
2,500,000 65.0 - 678 (90.7%) 4734 (98.6%)

Python code is inefficient as spline function calculated at every
node every time function is called.
See example on my website for calculating these once using the
pysetup() option.
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Example 4: Random effect models

Random effects models can be slow as they need to perform
numerical integration.
For a flexible parametric survival model

ln [H(t|X ,Z )] = s(ln(t)|γ, k0) + Xβ + Zu

u ∼ N(0,Σu)

These models can be fitted in Stata using stmixed, which calls
merlin using a gf0.

I have just implemented a ”proof of concept” with a random
intercept and 1 covariate with random coefficent with
unstructured covariance matrix.
Currently only non-adaptive quadrature is implemented.
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Random effect models

Use setup file to pre-calculate grid of nodes and weights for
numerical integration.

Python likelihood file
import jax.numpy as jnp
from scipy.special import roots_hermite

def mlad_setup(M):
# Design matrix for random effects
M[’Z’] = jnp.hstack((jnp.ones((M["z1"].shape[0],1)),M["z1"]))

# Nodes and weights
nodes, weights = roots_hermite(M["Nnodes"])
allnodes = jnp.repeat(jnp.asarray(jnp.sqrt(2)*nodes[:,None]),2,axis=1).T
M[’nodes’] = (jnp.asarray(jnp.meshgrid(allnodes[0,:],allnodes[1,:])).T.reshape(-1, 2))
M[’nodes’] = jnp.asarray(M[’nodes’])[:,:,None]
allweights = jnp.repeat(jnp.asarray(weights[:,None])/jnp.sqrt(jnp.pi),2,axis=1).T
weightscomb = (jnp.asarray(jnp.meshgrid(allweights[0,:],allweights[1,:])).T.reshape(-1, 2))
M[’weights’] = jnp.prod(weightscomb,axis=1)
return(M)
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Random effect models
Python likelihood file
import jax.numpy as jnp
import mladutil as mu
from jax import vmap
from jax.numpy.linalg import cholesky

def python_ll(beta,X,wt,M,Nid):
xb = mu.linpred(beta,X,1)
dxb = mu.linpred(beta,X,2)
sigma0 = mu.linpred(beta,X,3)[0,0]
sigma1 = mu.linpred(beta,X,4)[0,0]
sigma01 = mu.linpred(beta,X,5)[0,0]

V = jnp.vstack((jnp.hstack((sigma0, sigma01)),
jnp.hstack((sigma01,sigma1))))
C = cholesky(V)

def calc_lnft_fpm(v):
lp = xb + M["Z"]@C@v
return((M["d"]*(jnp.log(dxb) + lp) - jnp.exp(lp))[:,0])

vect_calc_lnft_fpm = vmap(calc_lnft_fpm,(0),1)

def getllj(v):
logF = vect_calc_lnft_fpm(v)
return(jnp.exp(mu.sumoverid(M["id"],logF,Nid)))

llj = jnp.log(jnp.sum(M["weights"]*getllj(M["nodes"]),axis=1,keepdims=True))
return(jnp.sum(llj))
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Random effect models: Times
Flexible parametric survival model with random intercept,
random coefficient and unstructured covariance matrix.
Uses non-adaptive quadrature.
Estimates are identical

Sample Size mlad stmixed % improvement
1,000 2.3 4.9 53.6%

10,000 2.6 74.0 96.5%
50,000 4.2 250.1 98.3%

100,000 7.4 403.1 98.2%
250,000 15.2 1,166.4 98.7%
500,000 29.4 2,115.5 98.6%

1,000,000 59.2 4,274.9 98.6%
1,500,000 83.9 9,548.8 99.1%

Speed comes at a cost of being memory hungry.
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Official commands
Speed gains for official Stata commands implemented with d2,
lf2, gf2 may be not as dramatic.
However, still some moderate improvements.

We sometimes use Poisson regression to model rates - through
splitting of time-scales into intervals.
This can lead to large datasets as many rows for each individual.

Python: poisson.py
import jax.numpy as jnp
import mladutil as mu

def python_ll(beta, X, wt, M):
xb = mu.linpred(beta,X,1)
return(jnp.sum(wt*(M["y"]*xb - jnp.exp(xb))))

Stata code
mlad (xb: = ‘covlist’, offset(lnrisktime)) ///

, othervars(y) llfile(poisson)
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glm

Individuals rows mlad-1P glm-1P glm-2P
1,000 41,297 0.3 0.7 (57.1%) 0.5 (40.0%)

10,000 410,119 1.8 6.8 (73.5%) 4.3 (58.1%)
50,000 2,040,827 6.6 31.1 (78.8) 18.7 (30.5%)

100,000 4,078,914 13.0 63.4 (79.5%) 36.8 (64.7%)
250,000 10,185,191 43.0 223.8 (80.7%) 143.6 (70.1%)
500,000 20,397,607 72.2 393.6 (81.6%) 253.8 (71.6%)

Can post estimates to glm to use post-estimation commands.
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Implementation

ml and mlad will be called from ”user friendly” programs.
Introduce a python option and syntax is similar to something
like

Python likelihood file
if "‘python’" == "" {

ml ......
}
else {

mlad ......
}

This is how it is implemented in strcs - updated version coming
soon.
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Summary

Important speed improvements for official and user written
commands.
Developers of estimation command can easily add to their
existing commands to get important speed gains.
Benefits of multiple CPUs, without using Stata MP.
Automatic differentiation simplifies development.
Started to add to our own commands (strcs).
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Other extensions

If weights are specified, automatically passed to Python.
If offsets are specified, automatically incorporated into linear
predictor.
Allows factors variables (slightly slower).
Allows constraints.
Allows robust and cluster robust standard errors (Scores
obtained using AD).
Can choose to write gradient and Hessian function in Python.
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Issues

Not worth it for small sample sizes.
Memory intensive for numerical integration (using vmap())
User needs to install Python and jax and jaxlib Python
modules.
Less support for Windows (need to compile jaxlib from
source).
Python code needs to follow certain style for fast jit compilation.
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Examples on my Website

www.pclambert.net/software/mlad
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