The Assessment of Fit in the Class of Logistic Regression Models: A Pathway out of the Jungle of Pseudo-R²s Using Stata

2016 Swiss Stata Users' Group Meeting at the University of Bern, November 17th, 2016

"There is no safety in numbers." (Howard Wainer)

Dr. Wolfgang Langer Martin-Luther-Universität Halle-Wittenberg Institut für Soziologie

Associate Assistant Professor Université du Luxembourg

Contents:

- 1. What is the problem?
- 2. Summary of the econometric Monte-Carlo studies for Pseudo-R²s
- The generalization of the McKelvey & Zavoina Pseudo-R² for the multinomial logit model
- 4. An application of the generalized M&Z Pseudo-R² in an election study of East German students
- 5. Conclusions

1. What is the problem?

Current situation in applied research:

- An increasing number of people uses logistic models for qualitative dependent variables
- But users often complain about the bad fit of logistic regression models especially for the multinomial ones
- There is no general agreement on how to assess their fit corresponding to practical significance
- Let me show you the pathway out of the jungle of the pseudo-coefficients of determination

Which solutions does Stata provide?

- Indeed, for binary, ordinal and multinomial logit model Stata calculates only the McFadden Pseudo-R²
- but J.Scott Long & Jeremy Freese have published their fitstat.ado in 2000. It calculates a set of Pseudo-R²s for binary, ordinal, multinomial logit or limited dependent variable models discussed by Long in 1997

2. Summary of the econometric Monte-Carlo studies for testing Pseudo-R²s

- Econometricians made a lot of Monte-Carlo studies in the early 90s:
- Hagle & Mitchell 1992
- Veall & Zimmermann 1992, 1993, 1994
- Windmeijer 1995
- DeMaris 2002
- They tested systematically the most common Pseudo-R²s for binary and ordinal probit / logit models

Which Pseudo-R²s were tested in these studies?

- Likelihood-based measures:
- Maddala / Cox & Snell Pseudo-R² (1983 / 1989)
- Cragg & Uhler / Nagelkerke Pseudo-R² (1970 / 1992)
- Log-Likelihood-based measures:
- McFadden Pseudo-R² (1974)
- Aldrich & Nelson Pseudo-R² (1984)
- Aldrich & Nelson Pseudo-R² with the Veall & Zimmermann correction (1992)
- Basing on the estimated probabilities:
- Efron / Lave Pseudo-R² (1970 / 1978)
- Basing on the variance decomposition of the estimated Probits / Logits:
- McKelvey & Zavoina Pseudo-R² (1975)

Results of the Monte-Carlo-Studies for binary and ordinal logits or probits

- The McKelvey & Zavoina Pseudo-R² is the best estimator for the "true R²" of the OLS regression
- The Aldrich & Nelson Pseudo-R² with the Veall & Zimmermann correction is the best approximation of the McKelvey & Zavoina Pseudo-R²
- Lave / Efron, Aldrich & Nelson, McFadden and Cragg & Uhler Pseudo-R² severely underestimate the "true R²" of the OLS regression
- My personal advice:
 - Use the McKelvey&Zavoina Pseudo-R² to assess the fit of binary and ordinal logit models

Let's have a detailed look at the winner

McKelvey & Zavoina Pseudo-R² (M&Z Pseudo-R²)

$$M \& Z P seudo - R^{2} = \frac{Var(\hat{y}^{*})}{Var(\hat{y}^{*}) + Var(\varepsilon)} = \frac{\sum_{i=1}^{n} (\hat{y}_{i}^{*} - \overline{\hat{y}^{*}})^{2}}{\sum_{i=1}^{n} (\hat{y}_{i}^{*} - \overline{\hat{y}^{*}})^{2}} + \frac{n}{2}$$

Range: $0 \le M\&Z$ -Pseudo- $R^2 \le 1$

Legend:

 $Var(\hat{y}^*)$: Variance of the estimated logits (latent variable Y)

 \hat{y}_{i}^{*} : Estimated logit of case i

 $\widehat{\hat{y}}^*$: Mean of the estimated logits

 $\frac{\pi^2}{3}$: Variance of logistic density function

Generalization of McKelvey&Zavoina Pseudo-R² to multinomial logit model

- Equations of a multinomial logit model (MNL) for a dependent variable Y with 3 categories
 - Simultaneous estimation of the parameters of two logit equations instead of 2 separate binary logit models

(1)
$$\log \left[\frac{P_{3i}}{P_{1i}} \right] = \sum_{k=0}^{K} \beta_{31k} X_{ki} \left\{ + \varepsilon_{31i} \right\}$$

(2)
$$\log \left[\frac{P_{2i}}{P_{1i}} \right] = \sum_{k=0}^{K} \beta_{21k} X_{ki} \left\{ + \varepsilon_{21i} \right\}$$

Conditions of getting unbiased estimates

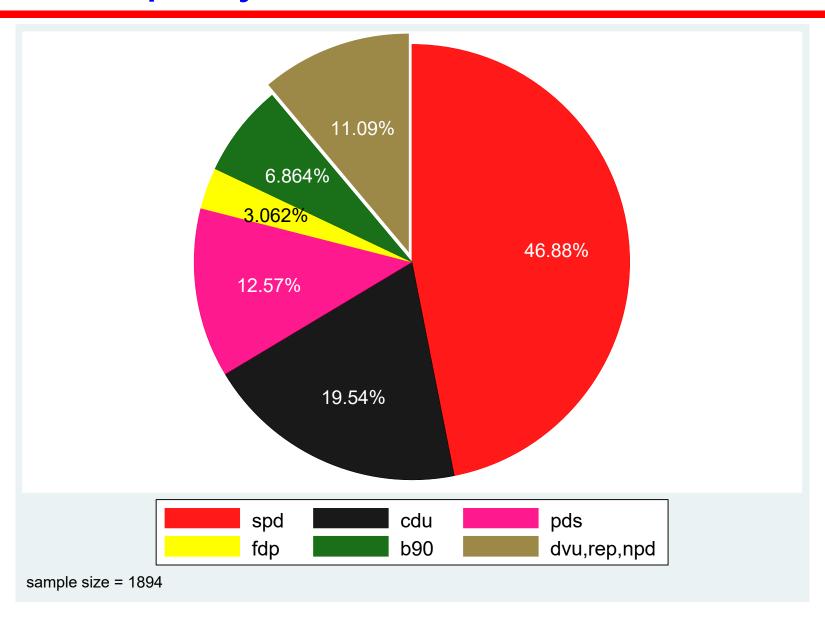
- Independence of Irrelevant Alternatives (IIA)-Axiom:
 - Comparison of two alternatives is independent of the existence of a third one
 - By using the MNL as a nonlinear probability model the IIA-assumption is fulfilled by the discrete and disjunctive categories of the dependent variable Y
- IID-Axiom formulated by Hensher, Rose & Greene (2005: 77):
 - The error terms ε are independently and identically distributed
 - Stochastic independence of ε_{21} and ε_{31}
 - Identical density function of ϵ_{21} and ϵ_{31}

Reasons to apply M&Z-Pseudo-R² to MNL

- The multinomial logit model (MNL) is ...
 - A multi-equation model
 - It has independent error terms ϵ_{21} and ϵ_{31}
 - ightharpoonup ϵ_{21} and ϵ_{31} follow the logistic density function
- Therefore we can calculate the McKelvey & Zavoina Pseudo-R² separately for each comparison of categories
 - Simultaneous estimation by the multinomial logit model
 - Estimation by k-1 separate binary logit models (Begg & Gray 1984)
- Therefore I use the binary McKelvey-Zavoina-Pseudo-R²s to validate the ones of the MNL

4. Application of the generalized M&Z Pseudo-R² in an election study

- The Student Election Survey 1998 in Sachsen-Anhalt
 - Population
 - 31.000 Students in 150 schools
 - All 5th thru 12th classes in all educational tracks
 - Age 10 thru 18 years
 - Sample
 - Representative probability sample of 3.500 students in 22 schools
 - Survey date: 4 days after the general federal election (october 1st,1998)


Independent variables

- C_AGE in years (centered)
- GENDER: boys vs. girls
- SCHOOL TYPE: GRAMMAR school, VOCATIONAL school vs. secondary school
- Internal and external political C_EFFICACY (centered)
- Perceived influence of the peers on the vote (PEERS)
- Perceived influence of the parents (PARENTS)
- Perceived influence of the media (MEDIA)
- Perceived influence of the teachers (TEACHERS)
- Countryside vs. city (LOCATION)

Dependent variable

- VOTING for party
 - Social Democratic Party (SPD) [0]
 - Christian Democratic Union (CDU) [1]
 - Party of Democratic Socialism / Ex-SED communist party (PDS) [2]
 - Free Demokratic Party / Liberals (FDP) [3]
 - Alliance 90 / the Green (B90) [4]
 - Right-wing extremist parties (DVU, REP, NPD) [5]

Students' party votes in LSA 1998

Estimated multinomial logit model for voting

- Choice of the base outcome category
 - The comparison of right wing extremist vs. established parties marks the main political conflict line in East-Germany
- Stata mlogit output formated with Ben Jann's esttab.ado

	voting spd	cdu	pds	fdp	b90
c_age	-0.206***	-0.248***	-0.0872	-0.0271	-0.258***
_	(-4.34)	(-4.74)	(-1.54)	(-0.31)	(-3.85)
gender	-1.275***	-0.765***	-0.893***	-0.756*	-1.275***
_	(-6.77)	(-3.68)	(-4.02)	(-2.32)	(-4.94)
grammar	0.628	1.498***	1.559***	1.526**	1.710***
3	(1.82)	(4.02)	(3.92)	(2.75)	(4.02)
vocational	0.327	1.083**	0.493	0.0864	-0.0607
	(88.0)	(2.61)	(1.08)	(0.12)	(-0.10)
c efficacy	-0.109***	-0.120***	-0.0595	-0.0213	-0.192***
	(-3.69)	(-3.72)	(-1.70)	(-0.40)	(-4.74)
peers	-0.838***	-0.869***	-0.814***	-0.778***	-0.776***
-	(-8.68)	(-7.86)	(-6.67)	(-3.99)	(-5.16)
parents	0.488***	0.514***	0.550***	0.454**	0.324*
_	(4.80)	(4.63)	(4.62)	(2.58)	(2.28)
media	0.219*	0.0731	0.102	-0.0279	-0.0803
	(2.55)	(0.77)	(0.98)	(-0.18)	(-0.65)
teachers	0.0324	-0.0397	-0.269	-0.193	-0.0303
	(0.30)	(-0.33)	(-1.94)	(-0.88)	(-0.18)
location	-0.699**	-0.403	-0.340	-0.468	-1.315***
	(-2.84)	(-1.43)	(-1.08)	(-0.95)	(-3.55)
_cons	2.450***	1.151**	0.740	-0.448	1.015*
	(7.70)	(3.24)	(1.91)	(-0.78)	(2.37)
N	1894				
LR-chi2(50)	452.2916				
Prob	0.0000				
McFadden R2	0.0813				

t statistics in parentheses

Two-tailed tests: * p<0.05, ** p<0.01, *** p<0.001

Reference category of voting: right-wing extremist parties (DVU,REP,NPD)

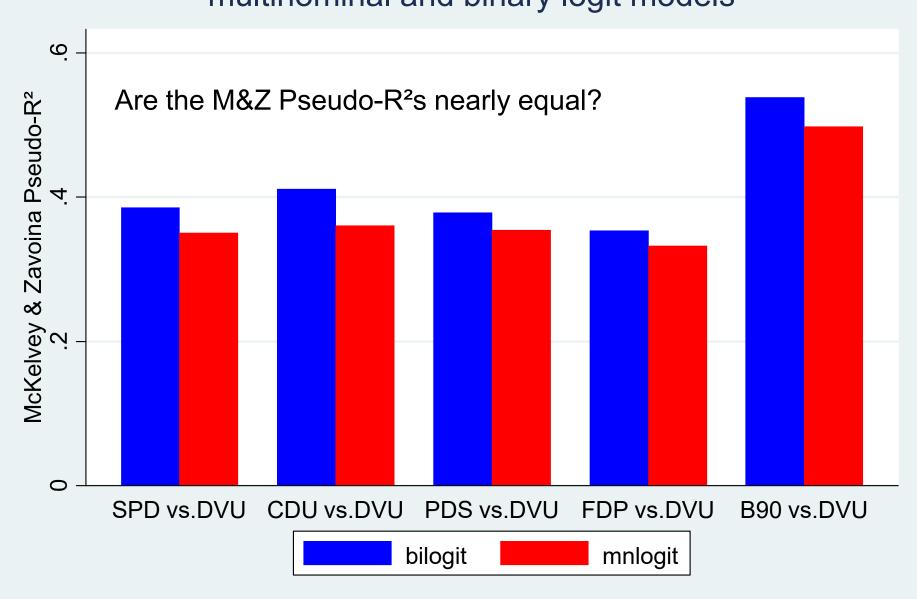
Classical fit indices and Pseudo-R²s

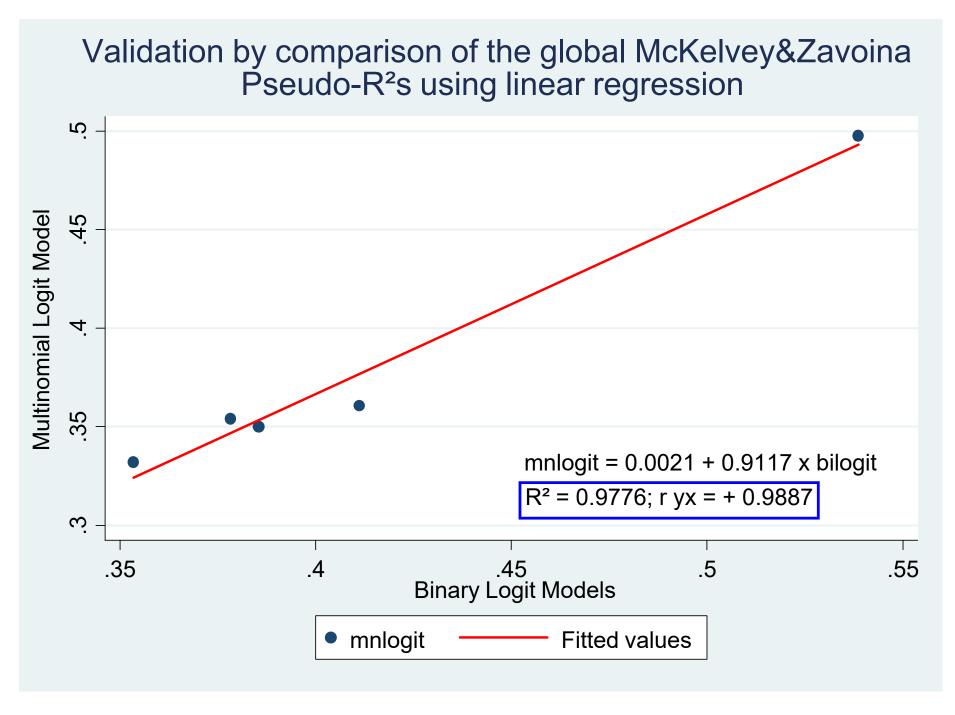
Calculated with Long & Freese's fitstat.ado

. fitstat

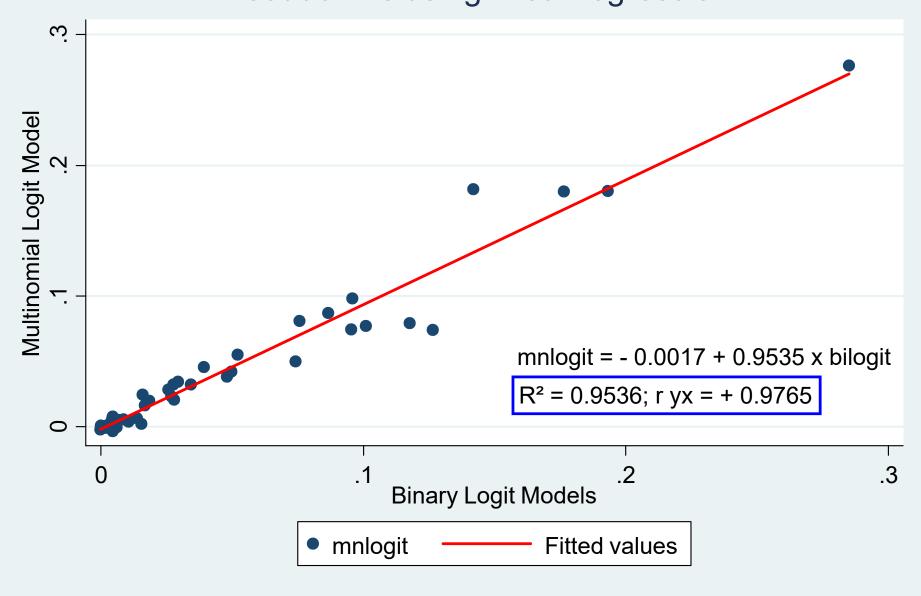
	mlogit	
Log-likelihood		
Model	-2556.642	
Intercept-only	-2782.788	•
Chi amunu		S
Chi-square		
Deviance (df=1839)	5113.285	
LR (df=50)	452.292	
p-value	0.000	_
R2		
McFadden	0.081	Indicating
McFadden (adjusted)	0.062	a bad
Cox-Snell/ML	0.212	overall fit
Cragg-Uhler/Nagelkerke	0.224	
Count	0.494	of the
Count (adjusted)	0.048	MNL!
IC		
AIC	5223.285	
AIC divided by N	2.758	
BIC (df=55)	5528.339	

McKelvey&Zavoina Pseudo-R² for each of k-1 comparisons of Y using my mlogit_mrz2.ado


. mlogit_mzr2
Separate McKelvey Zavoina pseudo R2 for mlogit equations


Equation	R2
spd	0.3501
cdu	0.3607
pds	0.3540
fdp	0.3322
b90	0.4978
dvu,rep,~d	0.0000

Indicating quite a good fit for the comparison of each established party with the right-wing extremist ones. Explained variance of the estimated logits lies between 33% and 50%.


This table presents the best fit of all possible base outcome categories of voting!

Validation by comparison of the partial McKelvey&Zavoina Pseudo-R²s using linear regression

5. Conclusions

Known

The Monte-Carlo-simulation studies show that the McKelvey&Zavoina Pseudo-R² is the best fit measure for binary and ordinal logit models

New

- Generalization of the M&Z-Pseudo-R² to the multinomial logit model to identify its differential fit for its k-1 binary comparisons
- Successful validation of these global and partial M&Z-Pseudo-R²s by those of the corresponding binary logit models
- That's why
 - I suggest to use my mlogit_mzr2.ado file to assess the differential fit of the multinomial logit model

Closing words

- Thank you for your attention
- Do you have some questions?

Contact:

- Affiliation:
 - Dr.Wolfgang Langer University of Halle Institute of Sociology D 06099 Halle (Saale)
 - Email: wolfgang.langer@soziologie.uni-halle.de