Creating LaTeX and HTML documents from within Stata using texdoc and webdoc

Example 1

Ben Jann University of Bern, ben.jann@soz.unibe.ch

> Swiss Stata Users Group meeting Bern, November 17, 2016

Contents

1	The texdoc source file	2
2	The resulting LATEX source file	4
3	The resulting PDF	6

1 The texdoc source file

- the-auto-data.texdoc -

```
texdoc init the-auto-data, replace logdir(log) ///
    gropts(optargs(width=0.8\textwidth))
set linesize 100
```

/***

```
\documentclass[12pt]{article}
\usepackage{fullpage}
\usepackage{hyperref,graphicx,booktabs,dcolumn}
\usepackage{stata}
```

\title{The Auto Data}
\author{Ben Jann}
\date{\today}

\begin{document}

\maketitle

\begin{abstract}

I really like the auto data because it is so awesome. You can do all kinds of stuff with the auto data, like tabulating a variable or computing descriptive statistics. You can even use the auto data to estimate regression models. I am really amazed by the richness of this dataset. There is information on many different makes and models and you can learn, for example, about the gear ratio of a Dodge Diplomat (a stunning 2.47). In this article I will illustrate the auto data and I will show you what you can do with it. I am convinced that you will love this dataset as much as I do after having read this paper.

 $\end{abstract}$

\tableofcontents

\section{Introduction}

What we want to do in the introductory section is to open the data and have a look at what is inside of it. Since the auto data is shipped with Stata, we can use the \stcmd{sysuse} command to open it (see \dref{sysuse}). Furthermore, the \stcmd{describe} command will list the variables and display some other information (see \dref{describe}). So let's start:

```
***/
```

texdoc stlog
 sysuse auto
 texdoc stlog cnp
 describe
texdoc stlog close
texdoc local N = r(N)

Wow! `N' observations! And what a wealth of variables! Make, price, miles per gallon, and many more. I am very motivated to learn more about this amazing data set. \section{Descriptives} Let's now look at some descriptive statistics. Maybe also let's do a graph. ***/ texdoc stlog summarize pspline price weight texdoc stlog close texdoc local pval = strofreal(r(gof_p),"%9.3f") texdoc graph, label(fig1) caption(What a crazy relation between price and weight) /*** In figure \ref{fig1} we see that for some unknown reason expensive cars seem to be heavier. Furthermore, the relation appears to be nonlinear, as the pilot goodness-of-fit test rejects the linear fit with a p-value of `pval'. \begin{quote}\small Actually, I really only want to print a graph without printing the code that produced the code. Hm, how can we do that? Maybe the \stcmd{nolog} option will do. \end{quote} ***/ texdoc stlog, nolog pspline price mpg texdoc stlog close texdoc graph, label(fig2) caption(Another crazy relation) /*** In figure~\ref{fig2} we see that price is also related to miles per gallon. How interesting! \section{Regression tables} ***/ texdoc stlog, nolog sysuse auto

/***

```
regress price weight
estimates store m1
regress price weight mpg
estimates store m2
regress price weight mpg foreign
estimates store m3
texdoc local coef = strofreal(_b[weight],"%9.1f")
esttab m1 m2 m3 using log/table1.tex, replace se label ///
nomtitles booktabs align(D{.}{.}{-1}) ///
title(Some regression table\label{table1})
texdoc stlog close
```

```
/***
```

Finally we get to regressions! In model~3 of table~\ref{table1} we see that an additional pound of car costs around `coef' dollars once we control for milage and origin.

***/

```
texdoc write \input{log/table1.tex}
```

/***

\end{document}
***/

- end of file -

2 The resulting LATEX source file

Applying

. texdoc do the-auto-data.texdoc

generates to the following LATEX file.

- the-auto-data.tex -

```
\documentclass[12pt]{article}
\usepackage{fullpage}
\usepackage{hyperref,graphicx,booktabs,dcolumn}
\usepackage{stata}
```

```
\title{The Auto Data}
\author{Ben Jann}
\date{\today}
```

\begin{document}

\maketitle

\begin{abstract}

I really like the auto data because it is so awesome. You can do all kinds of stuff with the auto data, like tabulating a variable or computing descriptive statistics. You can even use the auto data to estimate regression models. I am really amazed by the richness of this dataset. There is information on many different makes and models and you can learn, for example, about the gear ratio of a Dodge Diplomat (a stunning 2.47). In this article I will illustrate the auto data and I will show you what you can do with it. I am convinced that you will love this dataset as much as I do after having read this paper. \end{abstract}

\tableofcontents

\section{Introduction}

What we want to do in the introductory section is to open the data and have a look at what is inside of it. Since the auto data is shipped with Stata, we can use the \stcmd{sysuse} command to open it (see \dref{sysuse}). Furthermore, the \stcmd{describe} command will list the variables and display some other information (see \dref{describe}). So let's start:

\begin{stlog}\input{log/1.log.tex}\end{stlog}

Wow! 74 observations! And what a wealth of variables! Make, price, miles per gallon, and many more. I am very motivated to learn more about this amazing data set.

\section{Descriptives}

Let's now look at some descriptive statistics. Maybe also let's do a graph.

```
\begin{stlog}\input{log/2.log.tex}\end{stlog}
\begin{figure}
    \centering
    \includegraphics[width=0.8\textwidth]{log/2.pdf}
    \caption{What a crazy relation between price and weight}
    \label{fig1}
\end{figure}
```

In figure \ref{fig1} we see that for some unknown reason expensive cars seem to be heavier. Furthermore, the relation appears to be nonlinear, as the pilot goodness-of-fit test rejects the linear fit with a p-value of 0.009.

```
\begin{quote}\small
```

Actually, I really only want to print a graph without printing the code that produced the code. Hm, how can we do that? Maybe the \stcmd{nolog} option will do. \end{quote}

\begin{figure}

```
\centering
\includegraphics[width=0.8\textwidth]{log/3.pdf}
\caption{Another crazy relation}
\label{fig2}
\end{figure}
```

In figure \ref{fig2} we see that price is also related to miles per gallon. How interesting!

\section{Regression tables}

Finally we get to regressions! In model~3 of table~\ref{table1} we see that an additional pound of car costs around 3.5 dollars once we control for milage and origin.

```
\input{log/table1.tex}
```

 $\end{document}$

- end of file -

3 The resulting PDF

The following pages display the resulting PDF after compiling the LATEX source file.

The Auto Data

Ben Jann

November 17, 2016

Abstract

I really like the auto data because it is so awesome. You can do all kinds of stuff with the auto data, like tabulating a variable or computing descriptive statistics. You can even use the auto data to estimate regression models. I am really amazed by the richness of this dataset. There is information on many different makes and models and you can learn, for example, about the gear ratio of a Dodge Diplomat (a stunning 2.47). In this article I will illustrate the auto data and I will show you what you can do with it. I am convinced that you will love this dataset as much as I do after having read this paper.

Contents

1	Introduction	1
2	Descriptives	2
3	Regression tables	4

1 Introduction

What we want to do in the introductory section is to open the data and have a look at what is inside of it. Since the auto data is shipped with Stata, we can use the **sysuse** command to open it (see [D] **sysuse**). Furthermore, the **describe** command will list the variables and display some other information (see [D] **describe**). So let's start:

```
. sysuse auto
(1978 Automobile Data)
```

. describe									
Contains data	from /Ap	olications/	Stata14/ad	o/base/a/auto.dta					
obs: 74				1978 Automobile Data					
vars:	12			29 Jul 2016 15:41					
size:	3,182			(_dta has notes)					
	storage	display	value						
variable name	type	format	label	variable label					
make	str18	%-18s		Make and Model					
price	int	%8.0gc		Price					
mpg	int	%8.0g		Mileage (mpg)					
rep78	int	%8.0g		Repair Record 1978					
headroom	float	%6.1f		Headroom (in.)					
trunk	int	%8.0g		Trunk space (cu. ft.)					
weight	int	%8.0gc		Weight (lbs.)					
length	int	%8.0g		Length (in.)					
turn	int	%8.0g		Turn Circle (ft.)					
displacement	int	%8.0g		Displacement (cu. in.)					
_ gear_ratio	float	%6.2f		Gear Ratio					
foreign	byte	%8.0g	origin	Car type					

Sorted by: foreign

Wow! 74 observations! And what a wealth of variables! Make, price, miles per gallon, and many more. I am very motivated to learn more about this amazing data set.

2 Descriptives

Let's now look at some descriptive statistics. Maybe also let's do a graph.

. summarize									
Variable	Obs	3	Mean	5	Std.	Dev.	Mi	n	Max
make)							
price	74	1	6165.257	2	2949	.496	329	1	15906
mpg	74	1	21.2973	5	.78	5503	1	.2	41
rep78	69	Э	3.405797		989	9323		1	5
headroom	74	1	2.993243		845	9948	1.	5	5
trunk	74	1	13.75676	4	.27	7404		5	23
weight	74	1	3019.459	7	77.	1936	176	60	4840
length	74	1	187.9324	2	2.2	6634	14	2	233
turn	74	1	39.64865	4	.39	9354	3	31	51
displacement	74	1	197.2973	ç	91.8	3722	7	'9	425
gear_ratio	74	1	3.014865		456	2871	2.1	.9	3.89
foreign	74	1	.2972973		460	1885		0	1
. pspline prie (pilot goodnes (using penalis	ce weight ss-of-fit cl zed model .	ni2(:)	16) = 32.3	8; p) = (0.0089)		

In figure 1 we see that for some unknown reason expensive cars seem to be heavier. Furthermore, the relation appears to be nonlinear, as the pilot goodness-of-fit test rejects the linear fit with a p-value of 0.009.

Actually, I really only want to print a graph without printing the code that produced the code. Hm, how can we do that? Maybe the nolog option will do.

In figure 2 we see that price is also related to miles per gallon. How interesting!

Figure 1: What a crazy relation between price and weight

Figure 2: Another crazy relation

3 Regression tables

Finally we get to regressions! In model 3 of table 1 we see that an additional pound of car costs around 3.5 dollars once we control for milage and origin.

T	Table 1: Some regression table							
	(1)	(2)	(3)					
Weight (lbs.)	2.044^{***} (0.377)	$\frac{1.747^{**}}{(0.641)}$	3.465^{***} (0.631)					
Mileage (mpg)		-49.51 (86.16)	21.85 (74.22)					
Car type			3673.1^{***} (684.0)					
Constant	-6.707 (1174.4)	$1946.1 \\ (3597.0)$	-5853.7 (3377.0)					
Observations	74	74	74					

Standard errors in parentheses

* p < 0.05,** p < 0.01,*** p < 0.001