# Creating LaTeX and HTML documents from within Stata using texdoc and webdoc 

## Example 1

Ben Jann<br>University of Bern, ben.jann@soz.unibe.ch<br>Swiss Stata Users Group meeting<br>Bern, November 17, 2016

## Contents

1 The texdoc source file 2
2 The resulting $\mathrm{IAT}_{\mathbf{E}} \mathrm{X}$ source file $\quad 4$
3 The resulting PDF

## 1 The texdoc source file

```
- the-auto-data.texdoc -
texdoc init the-auto-data, replace logdir(log) ///
        gropts(optargs(width=0.8\textwidth))
set linesize 100
/***
\documentclass[12pt]{article}
\usepackage{fullpage}
\usepackage{hyperref,graphicx,booktabs,dcolumn}
\usepackage{stata}
\title{The Auto Data}
\author{Ben Jann}
\date{\today}
\begin{document}
\maketitle
\begin{abstract}
    I really like the auto data because it is so awesome. You can do all kinds
    of stuff with the auto data, like tabulating a variable or computing
    descriptive statistics. You can even use the auto data to estimate
    regression models. I am really amazed by the richness of this dataset.
    There is information on many different makes and models and you can learn,
    for example, about the gear ratio of a Dodge Diplomat (a stunning 2.47). In
    this article I will illustrate the auto data and I will show you what you
    can do with it. I am convinced that you will love this dataset as much as I
    do after having read this paper.
\end{abstract}
\tableofcontents
\section{Introduction}
```

What we want to do in the introductory section is to open the data and have a
look at what is inside of it. Since the auto data is shipped with Stata, we can
use the \stcmd\{sysuse\} command to open it (see \dref\{sysuse\}). Furthermore, the
\stcmd\{describe\} command will list the variables and display some other
information (see \dref\{describe\}). So let's start:
***/
texdoc stlog
sysuse auto
texdoc stlog cnp
describe
texdoc stlog close
texdoc local $N=r(N)$

```
/***
Wow! 'N' observations! And what a wealth of variables! Make, price, miles per
gallon, and many more. I am very motivated to learn more about this amazing
data set.
\section{Descriptives}
Let's now look at some descriptive statistics. Maybe also let's
do a graph.
***/
texdoc stlog
    summarize
    pspline price weight
texdoc stlog close
texdoc local pval = strofreal(r(gof_p),"%9.3f")
texdoc graph, label(fig1) caption(What a crazy relation between price and weight)
/***
In figure~\ref{fig1} we see that for some unknown reason expensive cars seem to
be heavier. Furthermore, the relation appears to be nonlinear, as the pilot
goodness-of-fit test rejects the linear fit with a p-value of 'pval'.
\begin{quote}\small
Actually, I really only want to print a graph without printing the code that
produced the code. Hm, how can we do that? Maybe the \stcmd{nolog} option will
do.
\end{quote}
***/
texdoc stlog, nolog
    pspline price mpg
texdoc stlog close
texdoc graph, label(fig2) caption(Another crazy relation)
/***
In figure~\ref{fig2} we see that price is also related to miles per gallon. How
interesting!
\section{Regression tables}
***/
texdoc stlog, nolog
    sysuse auto
```

```
    regress price weight
    estimates store m1
    regress price weight mpg
    estimates store m2
    regress price weight mpg foreign
    estimates store m3
    texdoc local coef = strofreal(_b[weight],"%9.1f")
    esttab m1 m2 m3 using log/table1.tex, replace se label ///
    nomtitles booktabs align(D{.}{.}{-1}) ///
    title(Some regression table\label{table1})
texdoc stlog close
/***
Finally we get to regressions! In model~3 of table~\ref{table1} we see that an
additional pound of car costs around `coef' dollars once we control for milage
and origin.
***/
texdoc write \input{log/table1.tex}
/***
\end{document}
***/
- end of file -
```


## 2 The resulting $\mathrm{IT}_{\mathrm{E}} \mathrm{X}$ source file

Applying
. texdoc do the-auto-data.texdoc
generates to the following $\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$ file.

- the-auto-data.tex -
ocumentclass[12pt]\{article\}\usepackage\{fullpage\}\usepackage\{hyperref,graphicx,booktabs,dcolumn\}\usepackage\{stata\}undefinedundefinedundefinedundefinedundefinedundefined

\title\{The Auto Data\}

\author\{Ben Jann\}
\date\{\today\}

\begin\{document\} }
\maketitle
\begin\{abstract\} }

I really like the auto data because it is so awesome. You can do all kinds of stuff with the auto data, like tabulating a variable or computing descriptive statistics. You can even use the auto data to estimate regression models. I am really amazed by the richness of this dataset. There is information on many different makes and models and you can learn, for example, about the gear ratio of a Dodge Diplomat (a stunning 2.47). In this article I will illustrate the auto data and I will show you what you can do with it. I am convinced that you will love this dataset as much as I do after having read this paper.
\end\{abstract\} }
\tableof contents

\section\{Introduction\}

What we want to do in the introductory section is to open the data and have a look at what is inside of it. Since the auto data is shipped with Stata, we can use the \stcmd\{sysuse\} command to open it (see \dref\{sysuse\}). Furthermore, the \stcmd\{describe\} command will list the variables and display some other information (see \dref\{describe\}). So let's start:
\begin\{stlog\}\input\{log/1.log.tex\}\end\{stlog\} }
Wow! 74 observations! And what a wealth of variables! Make, price, miles per gallon, and many more. I am very motivated to learn more about this amazing data set.

\section\{Descriptives\}

Let's now look at some descriptive statistics. Maybe also let's do a graph.
\begin\{stlog\}\input\{log/2.log.tex\}\end\{stlog\} }
\begin\{figure\} }

\caption\{What a crazy relation between price and weight\}
\label\{fig1\}
\end\{figure\} }
In figure ${ }^{\sim} \backslash r e f\{f i g 1\}$ we see that for some unknown reason expensive cars seem to be heavier. Furthermore, the relation appears to be nonlinear, as the pilot goodness-of-fit test rejects the linear fit with a p-value of 0.009 .
\begin\{quote\}\small }
Actually, I really only want to print a graph without printing the code that produced the code. Hm, how can we do that? Maybe the \stcmd\{nolog\} option will do.
\end\{quote\} }
\begin\{figure\} }

```
    \centering
    \includegraphics[width=0.8\textwidth]{log/3.pdf}
    \caption{Another crazy relation}
    \label{fig2}
\end{figure}
In figure~\ref{fig2} we see that price is also related to miles per gallon. How
interesting!
\section{Regression tables}
Finally we get to regressions! In model~3 of table~\ref{table1} we see that an
additional pound of car costs around 3.5 dollars once we control for milage
and origin.
\input{log/table1.tex}
\end{document}
- end of file -
```


## 3 The resulting PDF

The following pages display the resulting PDF after compiling the $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ source file.

# The Auto Data 

Ben Jann

November 17, 2016


#### Abstract

I really like the auto data because it is so awesome. You can do all kinds of stuff with the auto data, like tabulating a variable or computing descriptive statistics. You can even use the auto data to estimate regression models. I am really amazed by the richness of this dataset. There is information on many different makes and models and you can learn, for example, about the gear ratio of a Dodge Diplomat (a stunning 2.47). In this article I will illustrate the auto data and I will show you what you can do with it. I am convinced that you will love this dataset as much as I do after having read this paper.


## Contents

1 Introduction ..... 1
2 Descriptives ..... 2
3 Regression tables ..... 4

## 1 Introduction

What we want to do in the introductory section is to open the data and have a look at what is inside of it. Since the auto data is shipped with Stata, we can use the sysuse command to open it (see [D] sysuse). Furthermore, the describe command will list the variables and display some other information (see [d] describe). So let's start:

```
. sysuse auto
(1978 Automobile Data)
```

| ```Contains data obs: vars: size:``` | $\begin{gathered} \text { from /Ap } \\ 74 \\ 12 \\ 3,182 \end{gathered}$ | cations | ata14/a | base/a/auto.dta <br> 1978 Automobile Data <br> 29 Jul 2016 15:41 <br> (_dta has notes) |
| :---: | :---: | :---: | :---: | :---: |
| variable name | storage type | display <br> format | value <br> label | variable label |
| make | str18 | \%-18s |  | Make and Model |
| price | int | \%8.0gc |  | Price |
| mpg | int | \%8.0g |  | Mileage (mpg) |
| rep78 | int | \%8.0g |  | Repair Record 1978 |
| headroom | float | \%6.1f |  | Headroom (in.) |
| trunk | int | \%8.0g |  | Trunk space (cu. ft.) |
| weight | int | \%8.0gc |  | Weight (lbs.) |
| length | int | \%8.0g |  | Length (in.) |
| turn | int | \%8.0g |  | Turn Circle (ft.) |
| displacement | int | \%8.0g |  | Displacement (cu. in.) |
| gear_ratio | float | $\% 6.2 \mathrm{f}$ |  | Gear Ratio |
| foreign | byte | \%8.0g | origin | Car type |

Sorted by: foreign
Wow! 74 observations! And what a wealth of variables! Make, price, miles per gallon, and many more. I am very motivated to learn more about this amazing data set.

## 2 Descriptives

Let's now look at some descriptive statistics. Maybe also let's do a graph.

| . summarize |  |  |  |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: |
| Variable | Obs | Mean | Std. Dev. | Min | Max |
| make | 0 |  |  |  |  |
| price | 74 | 6165.257 | 2949.496 | 3291 | 15906 |
| mpg | 74 | 21.2973 | 5.785503 | 12 | 41 |
| rep78 | 69 | 3.405797 | .9899323 | 1 | 5 |
| headroom | 74 | 2.993243 | .8459948 | 1.5 | 5 |
| trunk | 74 | 13.75676 | 4.277404 | 5 | 23 |
| weight | 74 | 3019.459 | 777.1936 | 1760 | 4840 |
| length | 74 | 187.9324 | 22.26634 | 142 | 233 |
| turn | 74 | 39.64865 | 4.399354 | 31 | 51 |
| displacement | 74 | 197.2973 | 91.83722 | 79 | 425 |
| gear_ratio | 74 | 3.014865 | .4562871 | 2.19 | 3.89 |
| foreign | 74 | .2972973 | .4601885 | 0 | 1 |
| pspline price weight |  |  |  |  |  |
| (pilot goodness-of-fit chi2(16) $=32.38 ; ~ p=0.0089)$ |  |  |  |  |  |
| (using penalized model $\ldots$...) |  |  |  |  |  |

In figure 1 we see that for some unknown reason expensive cars seem to be heavier. Furthermore, the relation appears to be nonlinear, as the pilot goodness-of-fit test rejects the linear fit with a p-value of 0.009 .

Actually, I really only want to print a graph without printing the code that produced the code. Hm, how can we do that? Maybe the nolog option will do.

In figure 2 we see that price is also related to miles per gallon. How interesting!


Figure 1: What a crazy relation between price and weight


Figure 2: Another crazy relation

## 3 Regression tables

Finally we get to regressions! In model 3 of table 1 we see that an additional pound of car costs around 3.5 dollars once we control for milage and origin.

Table 1: Some regression table

| $(1)$ |  |  |  |
| :--- | :---: | :---: | :---: |
|  | $(2)$ | $(3)$ |  |
| Weight (lbs.) | $2.044^{* * *}$ | $1.747^{* *}$ | $3.465^{* * *}$ |
|  | $(0.377)$ | $(0.641)$ | $(0.631)$ |
| Mileage (mpg) |  | -49.51 | 21.85 |
|  |  | $(86.16)$ | $(74.22)$ |
| Car type |  | $3673.1^{* * *}$ |  |
|  |  |  | $(684.0)$ |
| Constant | -6.707 | 1946.1 | -5853.7 |
|  | $(1174.4)$ | $(3597.0)$ | $(3377.0)$ |
| Observations | 74 | 74 | 74 |
| Standard errors in parentheses |  |  |  |
| ${ }^{*} p<0.05,{ }^{* *} p<0.01,{ }^{* * *} p<0.001$ |  |  |  |

