Dealing With and Understanding Endogeneity

Enrique Pinzón

StataCorp LP

October 20, 2016 Barcelona

Importance of Endogeneity

- Endogeneity occurs when a variable, observed or unobserved, that is not included in our models, is related to a variable we incorporated in our model.
- Model building
- Endogeneity contradicts:
 - Unobservables have no effect or explanatory power
 - The covariates cause the outcome of interest
- Endogeneity prevents us from making causal claims
- Endogeneity is a fundamental concern of social scientists (first to the party)

Importance of Endogeneity

- Endogeneity occurs when a variable, observed or unobserved, that is not included in our models, is related to a variable we incorporated in our model.
- Model building
- Endogeneity contradicts:
 - Unobservables have no effect or explanatory power
 - The covariates cause the outcome of interest
- Endogeneity prevents us from making causal claims
- Endogeneity is a fundamental concern of social scientists (first to the party)

Outline

- Defining concepts and building our intuition
- Stata built in tools to solve endogeneity problems
- 3 Stata commands to address endogeneity in non-built-in situations

Defining concepts and building our intuition

Building our Intuition: A Regression Model

The regression model is given by:

$$y_i = \beta_0 + \beta_1 x_{1i} + \ldots + \beta_k x_{ki} + \varepsilon_i$$

$$E(\varepsilon_i | x_{1i}, \ldots, x_{ki}) = 0$$

 Once we have the information of our regressors, on average what we did not include in our model has no importance.

$$E(y_i|x_{1i},...,x_{ki}) = \beta_0 + \beta_1 x_{1i} + ... + \beta_k x_{ki}$$

Building our Intuition: A Regression Model

The regression model is given by:

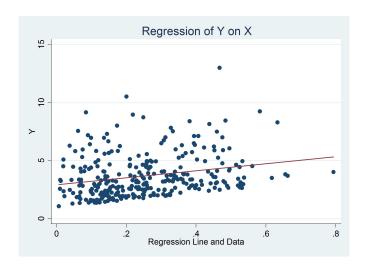
$$y_i = \beta_0 + \beta_1 x_{1i} + \ldots + \beta_k x_{ki} + \varepsilon_i$$

$$E(\varepsilon_i | x_{1i}, \ldots, x_{ki}) = 0$$

 Once we have the information of our regressors, on average what we did not include in our model has no importance.

$$E(y_i|x_{1i},\ldots,x_{ki})=\beta_0+\beta_1x_{1i}+\ldots+\beta_kx_{ki}$$

Graphically



Examples of Endogeneity

- We want to explain wages and we use years of schooling as a covariate. Years of schooling is correlated with unobserved ability, and work ethic.
- We want to explain to probability of divorce and use employment status as a covariate. Employment status might be correlated to unobserved economic shocks.
- We want to explain graduation rates for different school districts and use the fraction of the budget used in education as a covariate. Budget decisions are correlated to unobservable political factors.
- Estimating demand for a good using prices. Demand and prices are determined simultaneously.

A General Framework

If the unobservables, what we did not include in our model is correlated to our covariates then:

$$E(\varepsilon|X)\neq 0$$

- Omitted variable "bias"
- Simultaneity
- Functional form misspecification
- Selection "bias"

A useful implication of the above condition

$$E(X'\varepsilon)\neq 0$$

A General Framework

If the unobservables, what we did not include in our model is correlated to our covariates then:

$$E(\varepsilon|X)\neq 0$$

- Omitted variable "bias"
- Simultaneity
- Functional form misspecification
- Selection "bias"

A useful implication of the above condition

$$E(X'\varepsilon)\neq 0$$

A General Framework

If the unobservables, what we did not include in our model is correlated to our covariates then:

$$E(\varepsilon|X)\neq 0$$

- Omitted variable "bias"
- Simultaneity
- Functional form misspecification
- Selection "bias"

A useful implication of the above condition

$$E(X'\varepsilon) \neq 0$$

Example 1: Omitted Variable "Bias"

The true model is given by

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \varepsilon$$

$$E(\varepsilon | x_1, x_2) = 0$$

the researcher does not incorporate x_2 , i.e. they think

$$y = \beta_0 + \beta_1 x_1 + \nu$$

The objective is to estimate β_1 . In our framework we get a consistent estimate if

$$E\left(\nu|X_1\right)=0$$

Example 1: Omitted Variable "Bias"

The true model is given by

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \varepsilon$$
$$E(\varepsilon | x_1, x_2) = 0$$

the researcher does not incorporate x_2 , i.e. they think

$$y = \beta_0 + \beta_1 x_1 + \nu$$

The objective is to estimate β_1 . In our framework we get a consistent estimate if

$$E\left(\nu|x_1\right)=0$$

Example 1: Endogeneity

Using the definition of the true model

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \varepsilon$$

$$E(\varepsilon | x_1, x_2) = 0$$

We know that

$$\nu = \beta_2 x_2 + \varepsilon$$

and

$$E(\nu|x_1) = \beta_2 E(x_2|x_1)$$

 $E(\nu|x_1) = 0$ only if $\beta_2 = 0$ or x_2 and x_1 are uncorrelated

Example 1: Endogeneity

Using the definition of the true model

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \varepsilon$$

$$E(\varepsilon | x_1, x_2) = 0$$

We know that

$$\nu = \beta_2 \mathbf{x_2} + \varepsilon$$

and

$$E(\nu|x_1) = \beta_2 E(x_2|x_1)$$

 $E(\nu|x_1) = 0$ only if $\beta_2 = 0$ or x_2 and x_1 are uncorrelated

Example 1 Simulating Data

```
. clear
. set obs 10000
number of observations (_N) was 0, now 10,000
. set seed 111
. // Generating a common component for x1 and x2
. generate a = rchi2(1)
. // Generating x1 and x2
. generate x1 = rnormal() + a
. generate x2 = rchi2(2)-3 + a
. generate e = rchi2(1) - 1
. // Generating the outcome
. generate v = 1 - x1 + x2 + e
```

Example 1 Estimation

- . // estimating true model
- . quietly regress y x1 x2
- . estimates store real
- . //estimating model with omitted variable
- . quietly regress y x1
- . estimates store omitted
- . estimates table real omitted, se

Variable	real	omitted			
x1 x2	98710456 .00915198 .99993928 .00648263	31950213 .01482454			
_cons	.9920283 .01678995	.32968254 .02983985			

legend: b/se

Example 2: Simultaneity in a market equilibrium

The demand and supply equations for the market are given by

$$Q_d = \beta P_d + \varepsilon_d$$
$$Q_s = \theta P_s + \varepsilon_s$$

If a researcher wants to estimate Q^d and ignores that P^d is simultaneously determined, we have an endogeneity problem that fits in our framework.

13 / 59

(StataCorp LP) October 20, 2016 Barcelona

Example 2: Assumptions and Equilibrium

We assume:

- All quantities are scalars
- β < 0 and θ > 0
- $E(\varepsilon_d) = E(\varepsilon_s) = E(\varepsilon_d \varepsilon_s) = 0$
- $E\left(\varepsilon_d^2\right) \equiv \sigma_d^2$

The equilibrium prices and quantities are given by:

$$P = \frac{\varepsilon_s - \varepsilon_d}{\beta - \theta}$$

$$Q = \frac{\beta \varepsilon_s - \theta \varepsilon_d}{\beta - \theta}$$

Example 2: Endogeneity

This is a simple linear model so we can verify if

$$E(P_d\varepsilon_d)=0$$

Using our equilibrium conditions and the fact that ε_s and ε_d are uncorrelated we get

$$E(P_{d}\varepsilon_{d}) = E\left(\frac{\varepsilon_{s} - \varepsilon_{d}}{\beta - \theta}\varepsilon_{d}\right)$$

$$= \frac{E(\varepsilon_{s}\varepsilon_{d})}{\beta - \theta} - \frac{E(\varepsilon_{d}^{2})}{\beta - \theta}$$

$$= -\frac{E(\varepsilon_{d}^{2})}{\beta - \theta}$$

$$= -\frac{\sigma_{d}^{2}}{\beta - \theta}$$

Example 2: Endogeneity

This is a simple linear model so we can verify if

$$E(P_d\varepsilon_d)=0$$

Using our equilibrium conditions and the fact that ε_s and ε_d are uncorrelated we get

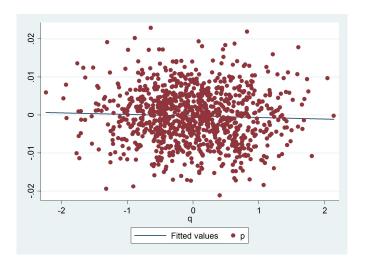
$$E(P_{d}\varepsilon_{d}) = E\left(\frac{\varepsilon_{s} - \varepsilon_{d}}{\beta - \theta}\varepsilon_{d}\right)$$

$$= \frac{E(\varepsilon_{s}\varepsilon_{d})}{\beta - \theta} - \frac{E(\varepsilon_{d}^{2})}{\beta - \theta}$$

$$= -\frac{E(\varepsilon_{d}^{2})}{\beta - \theta}$$

$$= -\frac{\sigma_{d}^{2}}{\beta - \theta}$$

Example 2: Graphically



Example 3: Functional Form Misspecification

Suppose the true model is given by:

$$y = \sin(x) + \varepsilon$$

 $E(\varepsilon|x) = 0$

But the researcher thinks that:

$$y = x\beta + \nu$$

Example 3: Functional Form Misspecification

Suppose the true model is given by:

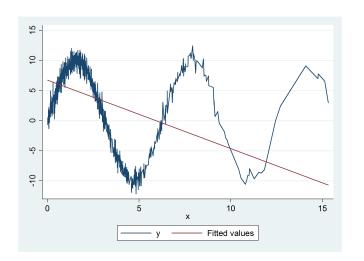
$$y = \sin(x) + \varepsilon$$

 $E(\varepsilon|x) = 0$

But the researcher thinks that:

$$y = x\beta + \nu$$

Example 3: Real vs. Estimated Predicted values



Example 3: Endogeneity

Adding zero we have

$$y = x\beta - x\beta + \sin(x) + \varepsilon$$

$$y = x\beta + \nu$$

$$\nu \equiv \sin(x) - x\beta + \varepsilon$$

For our estimates to be consistent we need to have $E\left(
u|X
ight)=0$ but

$$E(\nu|x) = \sin(x) - x\beta + E(\varepsilon|x)$$

$$= \sin(x) - x\beta$$

$$\neq 0$$

Example 3: Endogeneity

Adding zero we have

$$y = x\beta - x\beta + \sin(x) + \varepsilon$$

$$y = x\beta + \nu$$

$$\nu \equiv \sin(x) - x\beta + \varepsilon$$

For our estimates to be consistent we need to have $E(\nu|X)=0$ but

$$E(\nu|x) = \sin(x) - x\beta + E(\varepsilon|x)$$

$$= \sin(x) - x\beta$$

$$\neq 0$$

Example 3: Endogeneity

Adding zero we have

$$y = x\beta - x\beta + \sin(x) + \varepsilon$$

$$y = x\beta + \nu$$

$$\nu \equiv \sin(x) - x\beta + \varepsilon$$

For our estimates to be consistent we need to have $E(\nu|X) = 0$ but

$$E(\nu|x) = \sin(x) - x\beta + E(\varepsilon|x)$$

$$= \sin(x) - x\beta$$

$$\neq 0$$

Example 4: Sample Selection

- We observe the outcome of interest for a subsample of the population
- The subsample we observe is based on a rule For example we observe y if $y2 \ge 0$
- In a linear framework we have that:

$$E(y|X_1, y_2 \ge 0) = X_1\beta + E(\varepsilon|X_1, y_2 \ge 0)$$

- If $E(\varepsilon|X_1,y_2\geq 0)\neq 0$ we have selection bias
- In the classic framework this happens if the selection rule is related to the unobservables

Example 4: Endogeneity

If we define $X \equiv (X_1, y_2 \ge 0)$ we are back in our framework

$$E(y|X) = X_1\beta + E(\varepsilon|X)$$

And we can define endogeneity as happening when:

$$E(\varepsilon|X)\neq 0$$

Example 4: Simulating data

```
. clear
. set seed 111
. quietly set obs 20000
. // Generating Endogenous Components
. matrix C = (1, .8 \setminus .8, 1)
. quietly drawnorm e v, corr (C)
. // Generating exogenous variables
. generate x1 = rbeta(2,3)
. generate x2 = rbeta(2,3)
. generate x3 = rnormal()
. generate x4 = rchi2(1)
. // Generating outcome variables
. generate v1 = x1 - x2 + e
. generate y2 = 2 + x3 - x4 + v
. quietly replace v1 = . if v2 <= 0
```

Example 4: Estimation

. regress yl Source	x1 x2, nocons	df	MS		Number of obs F(2, 14845) Prob > F R-squared Adj R-squared Root MSE		14,847
Model Residual	1453.18513 13252.8872	2 14,845	726.59256	6 Prob 6 R-sq			813.88 0.0000 0.0988
Total	14706.0723	14,847	.99050800				0.0987 .94485
y1	Coef.	Std. Err.	t	P> t	[95% (Conf.	Interval]
x1 x2	1.153796 7896144	.0290464	39.72 -27.48	0.000	1.0968 84593		1.210731 7332919

What have we learnt

- Endogeneity manifests itself in many forms
- This manifestations can be understood within a general framework
- Mathematically $E(\varepsilon|X) \neq 0$ which implies $E(X\varepsilon) \neq 0$
- Considerations that were not in our model (variables, selection, simultaneity, functional form) affect the system and the model.

Built-in tools to solve for endogeneity

- ivregress, ivpoisson, ivtobit, ivprobit, xtivreg
- etregress, etpoisson, eteffects
- biprobit, reg3, sureg, xthtaylor
- heckman, heckprobit, heckoprobit

Instrumental Variables

- We model Y as a function of X_1 and X_2
- X₁ is endogenous
- We can model X_1
- X₁ can be divided into two parts; an endogenous part and an exogenous part

$$X_1 = f(X_2, Z) + \nu$$

- Z are variables that affect Y only through X_1
- Z are referred to as intrumental variables or excluded instruments

Instrumental Variables

- We model Y as a function of X_1 and X_2
- X₁ is endogenous
- We can model X₁
- X₁ can be divided into two parts; an endogenous part and an exogenous part

$$X_1 = f(X_2, Z) + \nu$$

- Z are variables that affect Y only through X_1
- Z are referred to as intrumental variables or excluded instruments

Instrumental Variables

- We model Y as a function of X_1 and X_2
- X₁ is endogenous
- We can model X₁
- X₁ can be divided into two parts; an endogenous part and an exogenous part

$$X_1 = f(X_2, Z) + \nu$$

- Z are variables that affect Y only through X₁
- Z are referred to as intrumental variables or excluded instruments

What Are These Instruments Anyway?

- We are modeling income as a function of education. Education is endogenous. Quarter of birth is an instrument, albeit weak.
- We are modeling the demand for fish. We need to exclude the supply shocks and keep only the demand shocks. Rain is an instrument.

Solving for Endogeneity Using Instrumental Variables

- The solution is the get a consistent estimate of the exogenous part and get rid of the endogenous part
- An example is two-stage least squares
- In two-stage least squares both relationships are linear

Simulating the Model

```
. clear
. set seed 111
. set obs 10000
number of observations (_N) was 0, now 10,000
. generate a = rchi2(2)
. generate e = rchi2(1) -3 + a
. generate v = rchi2(1) -3 + a
. generate x2 = rnormal()
. generate z = rnormal()
. generate x1 = 1 - z + x2 + v
. generate v = 1 - x1 + x2 + e
```

Estimation using Regression

. reg y x1 x2 Source	ss	df	MS	Nıımb	er of ob	s =	10,000
					9997)	=	1571.70
Model	12172.8278	2	6086.41388		> F	=	0.0000
Residual	38713.3039	9,997	3.87249214		uared	, =	0.2392
Total	50886.1317	9,999	5.08912208		R-squared MSE	d = =	1.9679
У	Coef.	Std. Err.	t	P> t	[95% (Conf.	Interval]
x1 x2 _cons	4187662 .4382175 .4425514	.007474 .0209813 .0210665	-56.03 20.89 21.01	0.000 0.000 0.000	43343 .397 .4012	709	4041156 .479345 .4838459

[.] estimates store reg

Manual Two-Stage Least Squares (Wrong S.E.)

```
. quietly regress x1 z x2
. predict double x1hat
(option xb assumed; fitted values)
. preserve
. replace x1 = x1hat
(10,000 real changes made)
. quietly regress y x1 x2
. estimates store manual
. restore
```

Estimation using Two-Stage Least Squares (2SLS)

```
. ivregress 2sls y x2 (x1=z)
Instrumental variables (2SLS) regression
```

```
Number of obs
                       10,000
Wald chi2(2)
                      1613.38
                       0.0000
Prob > chi2
R-squared
Root MSE
                       2.5174
```

У	Coef.	Std. Err.	Z	P> z	[95% Conf.	<pre>Interval]</pre>
x1	-1.015205	.0252942	-40.14	0.000	-1.064781	9656292
x2	1.005596	.0348808	28.83	0.000	.9372314	1.073961
_cons	1.042625	.0357962	29.13	0.000	.9724656	1.112784

Instrumented: Instruments: x2 z . estimates store tsls

Estimation

. estimates table reg tsls manual, se

Variable	reg	tsls	manual
x1	41876618 .007474	-1.0152049 .02529419	-1.0152049 .02026373
x2	.4382175	1.0055965	1.0055965
_cons	.02098126 .44255137 .02106646	.03488076 1.0426249 .03579622	.02794373 1.0426249 .02867713

legend: b/se

Other Alternatives

- sem, gsem, gmm
- These are tools to construct our own estimation
- sem and gsem model the unobservable correlation in multiple equations
- gmm is usually used to explicitly model a system of equations where we model the endogenous variable

What are sem and gsem

- SEM is for structural equation modeling and GSEM is for generalized structural equation modeling
- sem fits linear models for continuous responses. Models only allow for one level.
- gsem continuous, binary, ordinal, count, or multinomial, responses and multilevel modeling.
- Estimation is done using maximum likelihood
- It allows unobserved components in the equations and correlation between equations

What are sem and gsem

- SEM is for structural equation modeling and GSEM is for generalized structural equation modeling
- sem fits linear models for continuous responses. Models only allow for one level.
- gsem continuous, binary, ordinal, count, or multinomial, responses and multilevel modeling.
- Estimation is done using maximum likelihood
- It allows unobserved components in the equations and correlation between equations

What is gmm

- Generalized Method of Moments
- Estimation is based on being to write objects in the form

$$E[g(x,\theta)]=0$$

- \bullet θ is the parameter of interest
- If you can solve directly we have a method of moments.
- When we have more moments than parameters we need to give weights to the different moments and cannot solve directly.
- The weight matrix gives more weight to the more efficient moments.

What is gmm

- Generalized Method of Moments
- Estimation is based on being to write objects in the form

$$E[g(x,\theta)]=0$$

- \bullet θ is the parameter of interest
- If you can solve directly we have a method of moments.
- When we have more moments than parameters we need to give weights to the different moments and cannot solve directly.
- The weight matrix gives more weight to the more efficient moments.

Estimation Using sem

```
. sem (y <- x2 x1) (x1 <- x2 z), cov(e.y*e.x1) nolog
Endogenous variables
Observed: y x1
Exogenous variables
Observed: x2 z
Structural equation model
Estimation method = m1
Log likelihood = -71917.224</pre>
Number of obs = 10,000
```

	Coef.	OIM Std. Err.	z	P> z	[95% Conf.	Intorvall
	coer.	Stu. EII.		E > Z	[90% COM1.	Incervari
Structural v <-						
x1 x2 _cons	-1.015205 1.005596 1.042625	.0252942 .0348808 .0357962	-40.14 28.83 29.13	0.000 0.000 0.000	-1.064781 .9372314 .9724656	9656292 1.073961 1.112784
x1 <- x2 z _cons	.9467476 987925 1.011304	.0244521 .0241963 .0243764	38.72 -40.83 41.49	0.000 0.000 0.000	.8988225 -1.035349 .9635269	.9946728 9405011 1.059081
var(e.y) var(e.x1)	6.337463 5.941873	.2275635 .0840308			5.90678 5.779438	6.799549 6.108874
cov(e.y,e.x1)	4.134763	.1675226	24.68	0.000	3.806424	4.463101

LR test of model vs. saturated: chi2(0) = 0.00, Prob > chi2 =

[.] estimates store sem

Estimation Using gmm

		Coef.	Robust Std. Err.	Z	P> z	[95% Conf.	Interval]
xb							
	x1	-1.015205	.0252261	-40.24	0.000	-1.064647	9657627
	x2	1.005596	.0362111	27.77	0.000	.934624	1.076569
	_cons	1.042625	.0363351	28.69	0.000	.9714094	1.11384
xpi							
-	x2	.9467476	.0251266	37.68	0.000	.8975004	.9959949
	Z	987925	.0233745	-42.27	0.000	-1.033738	9421118
	_cons	1.011304	.0243761	41.49	0.000	.9635274	1.05908

Instruments for equation eq1: x2 z _cons Instruments for equation eq2: x2 z _cons . estimates store gmm

4□ > 4□ > 4 亘 > 4 亘 > □ □ ● 9 0 ○

$$y = \beta_0 + x_1\beta_1 + x_2\beta_2 + \varepsilon$$

$$x_1 = \pi_0 + x_2\pi_1 + z\pi_2 + \nu$$

$$Z \equiv (x_2 \quad z)$$

$$E(Z\varepsilon) = E(Z\nu) = 0$$

Where

$$\varepsilon = y - (\beta_0 + x_1 \beta_1 + x_2 \beta_2)$$

$$\nu = x_1 - (\pi_0 + x_2 \pi_1 + z \pi_2)$$

$$y = \beta_0 + x_1\beta_1 + x_2\beta_2 + \varepsilon$$

$$x_1 = \pi_0 + x_2\pi_1 + z\pi_2 + \nu$$

$$Z \equiv (x_2 \quad z)$$

$$E(Z\varepsilon) = E(Z\nu) = 0$$

Where

$$\varepsilon = y - (\beta_0 + x_1 \beta_1 + x_2 \beta_2)$$

$$\nu = x_1 - (\pi_0 + x_2 \pi_1 + z \pi_2)$$

Summarizing the results of our estimation

```
. estimates table reg tsls sem gmm, eq(1) se /// > keep(\#1:x1 \ \#1:x2 \ \#1:\_cons)
```

Variable	reg	tsls	sem	gmm
x1	41876618	-1.0152049	-1.0152049	-1.0152049
	.007474	.02529419	.02529419	.02522609
x2	.4382175	1.0055965	1.0055965	1.0055965
_cons	.44255137	1.0426249	1.0426249	1.0426249
	.02106646	.03579622	.03579622	.03633511

legend: b/se

Control Function Type Solutions

- The key element here is to model the correlation between the unobservables between the endogenous variable equation and the outcome equation
- This is what is referred to as a control function approach
- Heckman selection is similar to this approach

Heckman Selection

```
. clear
. set seed 111
. quietly set obs 20000
. // Generating Endogenous Components
. matrix C = (1, .4 \ .4, 1)
. quietly drawnorm e v, corr (C)
. // Generating exogenous variables
. generate x1 = rbeta(2,3)
. generate x2 = rbeta(2,3)
. generate x3 = rnormal()
. generate x4 = rchi2(1)
. // Generating outcome variables
. generate y1 = -1 - x1 - x2 + e
. generate y2 = (1 + x3 - x4) * .5 + v
. quietly replace y1 = . if y2 <= 0
. generate vp = v1 !=.
```

Heckman Solution

- Estimate a probit model for the selected observations as a function of a set of variables Z
- Then use the probit models to estimate:

$$E(y|X_1, y_2 \ge 0) = X_1\beta + E(\varepsilon|X_1, y_2 \ge 0)$$
$$= X_1\beta + \beta_s \frac{\phi(Z\gamma)}{\Phi(Z\gamma)}$$

• In other words regress y on X_1 and $\frac{\phi(Z\gamma)}{\Phi(Z\gamma)}$

Heckman Solution

- Estimate a probit model for the selected observations as a function of a set of variables Z
- Then use the probit models to estimate:

$$E(y|X_1, y_2 \ge 0) = X_1\beta + E(\varepsilon|X_1, y_2 \ge 0)$$
$$= X_1\beta + \beta_s \frac{\phi(Z\gamma)}{\Phi(Z\gamma)}$$

• In other words regress y on X_1 and $\frac{\phi(Z\gamma)}{\Phi(Z\gamma)}$

Heckman Estimation

. heckman v1 x1 x2, select (x3 x4)

```
Iteration 0:
                log likelihood = -25449.645
             log likelihood = -25449.586
Iteration 1:
Iteration 2:
              log likelihood = -25449.586
Heckman selection model
                                                   Number of obs
                                                                             20,000
(regression model with sample selection)
                                                   Censored obs
                                                                              9,583
                                                   Uncensored obs
                                                                             10,417
                                                   Wald chi2(2)
                                                                            1098.75
Log likelihood = -25449.59
                                                   Prob > chi2
                                                                             0.0000
          v1
                     Coef.
                              Std. Err.
                                              7.
                                                   P>|z|
                                                              [95% Conf. Interval]
v1
                                                   0.000
          \times 1
                 -1.117284
                              .0464766
                                          -24.04
                                                             -1.208377
                                                                          -1.026192
          x2
                 -1.049901
                              .0458861
                                          -22.88
                                                   0.000
                                                             -1.139836
                                                                          - 9599656
                 -.9559192
                              .0329022
                                          -29.05
                                                   0.000
                                                             -1.020406
                                                                           -.891432
       _cons
select
                  .4990633
                              .0104891
                                           47.58
                                                   0.000
                                                               .478505
                                                                           .5196216
          x3
                 -.4785327
                              .0101864
                                          -46.98
                                                   0.000
                                                             -.4984976
          x 4
                                                                          -.4585677
                                           38.35
                                                   0.000
                  .4807396
                              .0125354
                                                              .4561707
                                                                           .5053084
       cons
                                                   0.000
                                                              .3982946
     /athrho
                  .4614032
                              .0321988
                                           14.33
                                                                           .5245117
    /lnsigma
                 -.0047001
                              .0092076
                                           -0.51
                                                   0.610
                                                             -.0227466
                                                                           .0133465
         rho
                  .4312271
                              .0262112
                                                              .3784888
                                                                           .4811747
                              .0091644
                                                              .9775102
       sigma
                   .995311
                                                                           1.013436
      lambda
                  .4292051
                              .0288551
                                                              .3726501
                                                                           .4857601
LR test of indep. eqns. (rho = 0):
                                       chi2(1) =
                                                    208.78
                                                              Prob > chi2 = 0.0000
```

estimates store heckman

Two Steps Heuristically

```
. quietly probit yp x3 x4  
. matrix A = e(b)  
. quietly predict double xb, xb  
. quietly generate double mills = normalden(xb)/normal(xb)  
. quietly regress y1 x1 x2 mills  
. matrix B = A, b[x1], b[x2], b[cons], b[mills]
```

GMM Estimation

```
. local xb \{b1\}*x1 + \{b2\}*x2 + \{b0b\}
. local mills (normalden({xp:})/normal({xp:}))
. qmm (eq2: yp*(normalden({xp: x3 x4 _cons}))/normal({xp:})) - ///
           (1-yp) * (normalden(-{xp:})/normal(-{xp:})))
      (eq1: v1 - (`xb') - {b3}*(`mills'))
     (eq3: (v1 - (xb') - \{b3\}*(mills'))*mills'),
     instruments(eq1: x1 x2)
     instruments(eg2: x3 x4)
      winitial (unadjusted, independent) guickderivatives
      nocommonesample from (B)
Step 1
Iteration 0: GMM criterion O(b) = 2.279e-19
Iteration 1: GMM criterion O(b) = 2.802e-34
Step 2
Iteration 0: GMM criterion O(b) = 5.387e-34
Iteration 1: GMM criterion O(b) = 5.387e-34
note: model is exactly identified
GMM estimation
Number of parameters =
Number of moments
                                                  Number of obs
Initial weight matrix: Unadjusted
GMM weight matrix: Robust
```

	Coef.	Robust Std. Err.	z	P> z	[95% Conf.	Interval]
x3	.4992753	.0106148	47.04	0.000	.4784706	.52008
x4	4779557	.0104455	-45.76	0.000	4984285	4574828
_cons	.4798264	.012609	38.05	0.000	.4551132	.5045397
/b1	-1.115395	.0472637	-23.60	0.000	-1.20803	-1.02276
/b2	-1.048694	.0455168	-23.04	0.000	-1.137905	9594823
/b0b	9514073	.0332245	-28.64	0.000	-1.016526	8862885
/b3	.4199921	.0296825	14.15	0.000	.3618155	.4781686

* Number of observations for equation eq2: 20000 Number of observations for equation eq1: 10417 Number of observations for equation eq3: 10417

SEM Estimation of Heckman

```
. gsem (y1 <- x1 x2 L@a)(yp <- x3 x4 L@a, probit),
          var(L@1) nolog
Generalized structural equation model
                                                   Number of obs
                                                                             20,000
Response
                : v1
                                                   Number of obs
                                                                             10.417
Family
                : Gaussian
Link
                : identity
                                                   Number of obs
                                                                             20,000
Response
                : vp
                : Bernoulli
Family
Link
                : probit
Log likelihood = -25449.586
(1) - [v1]L + [vp]L = 0
 (2) [var(L)] cons = 1
                     Coef.
                              Std. Err.
                                                   P> | z |
                                                              [95% Conf. Interval]
                                              7.
v1 <-
                                                   0.000
                                                             -1.208377
                                                                          -1.026192
          x1
                 -1.117284
                              .0464766
                                          -24.04
                 -1.049901
                              .0458861
                                          -22.88
                                                   0.000
                                                             -1.139836
                                                                          -.9599656
          x2
                                          24.59
                  .7287588
                              .0296352
                                                   0.000
                                                              .6706749
                                                                           .7868426
                 -.9559206
                                          -29.05
                                                   0.000
                                                                          -.8914345
       cons
                              .0329017
                                                             -1.020407
yp <-
                  .6175268
                              .0142797
                                                   0.000
                                                               .589539
                                                                           .6455146
          x3
                                           43.24
          \times 4
                 -.5921228
                              .0140871
                                          -42.03
                                                   0.000
                                                              -.619733
                                                                          -.5645125
                  .7287588
                              .0296352
                                          24.59
                                                   0.000
                                                              .6706749
                                                                           .7868426
                  .5948535
                               .017244
                                          34.50
                                                   0.000
                                                               .561056
                                                                           .6286511
       cons
       var(L)
                             (constrained)
    var(e.v1)
                  .4595557
                              .0322516
                                                              .4004984
                                                                           .5273215
```

[.] estimates store hecksem

Comparing SEM and HECKMAN

Variable	heckman	hecksem
x1 x2 L	-1.117284 .04647661 -1.0499007 .04588611	-1.1172841 .04647661 -1.0499007 .04588611 .72875877 .02963515
_cons	95591918 .03290222	95592061 .03290166

legend: b/se

Non Built-In Situations

Control Function Approach in a Linear Model: The Model

```
. clear
. set seed 111
. set obs 10000
number of observations (_N) was 0, now 10,000
. generate a = rchi2(2)
. generate e = rchi2(1) -3 + a
. generate v = rchi2(1) -3 + a
. generate x2 = rnormal()
. generate z = rnormal()
. generate x1 = 1 - z + x2 + v
. generate y = 1 - x1 + x2 + e
```

Estimation Using a Control Function Approach

• The underlying model is

$$y = X_1\beta_1 + X_2\beta_2 + \varepsilon$$

$$X_2 = X_1\Pi_1 + Z\Pi_2 + \nu$$

$$\varepsilon = \nu\rho + \epsilon$$

$$E(\epsilon|X_1, X_2) = 0$$

This implies that:

$$y = X_1 \beta_1 + X_2 \beta_2 + \nu \rho + \epsilon$$

- We can regress y on X_1 , X_2 , and ν
- We can test for endogeneity

Estimation Using a Control Function Approach

• The underlying model is

$$y = X_1\beta_1 + X_2\beta_2 + \varepsilon$$

$$X_2 = X_1\Pi_1 + Z\Pi_2 + \nu$$

$$\varepsilon = \nu\rho + \epsilon$$

$$E(\epsilon|X_1, X_2) = 0$$

• This implies that:

$$y = X_1 \beta_1 + X_2 \beta_2 + \nu \rho + \epsilon$$

- We can regress y on X_1 , X_2 , and ν
- We can test for endogeneity

Estimation Using a Control Function Approach

• The underlying model is

$$y = X_1\beta_1 + X_2\beta_2 + \varepsilon$$

$$X_2 = X_1\Pi_1 + Z\Pi_2 + \nu$$

$$\varepsilon = \nu\rho + \epsilon$$

$$E(\epsilon|X_1, X_2) = 0$$

This implies that:

$$y = X_1 \beta_1 + X_2 \beta_2 + \nu \rho + \epsilon$$

- We can regress y on X_1 , X_2 , and ν
- We can test for endogeneity

Estimation of Control Function Using gmm

```
. local xbeta \{b1\}*x1 + \{b2\}*x2 + \{b3\}*(x1-\{xpi:\}) + \{b0\}
. gmm (eq3: (x1 - {xpi:x2 z _cons}))
                                       ///
    (eq1: v - (`xbeta'))
  (eq2: (y - (xbeta')) * (x1-{xpi:})), ///
    instruments(eq3: x2 z)
  instruments(eq1: x1 x2)
                                        ///
> winitial(unadjusted, independent) nolog
Final GMM criterion O(b) = 1.45e-32
note: model is exactly identified
GMM estimation
Number of parameters =
Number of moments
Initial weight matrix: Unadjusted
                                                Number of obs = 10.000
GMM weight matrix: Robust
```

	Coef.	Robust Std. Err.	z	P> z	[95% Conf.	Interval]
x2	.9467476	.0251266	37.68	0.000	.8975004	.9959949
z	987925	.0233745	-42.27	0.000	-1.033738	9421118
_cons	1.011304	.0243761	41.49	0.000	.9635274	1.05908
/b1	-1.015205	.0252261	-40.24	0.000	-1.064647	9657627
/b2	1.005596	.0362111	27.77	0.000	.934624	1.076569
/b3	.6958685	.0284014	24.50	0.000	.6402028	.7515342
/b0	1.042625	.0363351	28.69	0.000	.9714094	1.11384

```
Instruments for equation eq3: x2 z _cons
Instruments for equation eq1: x1 x2 _cons
Instruments for equation eq2: cons
```

Ordered Probit with Endogeneity

The model is given by:

$$y_1^* = y_2\beta + x\Pi + \varepsilon$$

$$y_2 = x\gamma_1 + z\gamma_2 + \nu$$

$$y_1 = j \text{ if } \kappa_{j-1} < y_1^* < \kappa_j$$

$$\kappa_0 = -\infty < \kappa_1 < \dots < \kappa_k = \infty$$

$$\varepsilon \sim N(0, 1)$$

$$cov(\nu, \varepsilon) \neq 0$$

gsem Representation

$$y_{1gsem}^* = y_2b + x\pi + t + L\alpha$$

 $t \sim N(0,1)$
 $L \sim N(0,1)$

Where $y_{1asem}^* = My_1^*$ and M is a constant. Noting that

$$y_{1gsem}^* = My_1^*$$

 $y_2b + x\pi + t + L\alpha = y_2M\beta + xM\Pi + M\varepsilon$

Which implies that

$$M\varepsilon = t + L\alpha$$
 $M^2 Var(\varepsilon) = Var(t + L\alpha)$
 $M^2 = 1 + \alpha^2$
 $M = \sqrt{1 + \alpha^2}$

gsem Representation

$$y_{1gsem}^* = y_2b + x\pi + t + L\alpha$$

 $t \sim N(0,1)$
 $L \sim N(0,1)$

Where $y_{1asem}^* = My_1^*$ and M is a constant. Noting that

$$y_{1gsem}^* = My_1^*$$

 $y_2b + x\pi + t + L\alpha = y_2M\beta + xM\Pi + M\varepsilon$

Which implies that

$$M\varepsilon = t + L\alpha$$
 $M^2 Var(\varepsilon) = Var(t + L\alpha)$
 $M^2 = 1 + \alpha^2$
 $M = \sqrt{1 + \alpha^2}$

gsem Representation

$$y_{1gsem}^{*} = y_{2}b + x\pi + t + L\alpha$$

 $t \sim N(0,1)$
 $L \sim N(0,1)$

Where $y_{1asem}^* = My_1^*$ and M is a constant. Noting that

$$y_{1gsem}^* = My_1^*$$

 $y_2b + x\pi + t + L\alpha = y_2M\beta + xM\Pi + M\varepsilon$

Which implies that

$$M\varepsilon = t + L\alpha$$
 $M^2 Var(\varepsilon) = Var(t + L\alpha)$
 $M^2 = 1 + \alpha^2$
 $M = \sqrt{1 + \alpha^2}$

Ordered Probit with Endogeneity: Simulation

```
. clear
. set seed 111
. set obs 10000
number of observations ( N) was 0, now 10,000
. forvalues i = 1/5 {
       gen x`i' = rnormal()
  3. }
. mat C = [1, .5 \setminus .5, 1]
. drawnorm e1 e2, cov(C)
. gen y2 = 0
. forvalues i = 1/5 {
  quietly replace y2 = y2 + x`i'
  3. }
. quietly replace y2 = y2 + e2
. gen v1star = v2 + x1 + x2 + e1
. \text{ gen } xb1 = y2 + x1 + x2
oldsymbol{.} gen v1 = 4
. quietly replace y1 = 3 if xb1 + e1 <= .8
. quietly replace y1 = 2 if xb1 + e1 <= .3
. quietly replace y1 = 1 if xb1 + e1 <=-.3
. quietly replace v1 = 0 if xb1 + e1 <= -.8
```

Ordered Probit with Endogeneity: Estimation

. gsem (y1 <- y2 x1 x2 L@a, oprobit) (y2 <- x1 x2 x3 x4 x5 L@a), var(L@1) nolog Generalized structural equation model Number of obs = 10,000 Response : y1

Family : ordinal
Link : probit
Response : y2
Family : Gaussian
Link : identity
Log likelihood = -18948.444
(1) [y1]L - [y2]L = 0
(2) [var(L)] cons = 1

		Coef.	Std. Err.	Z	P> z	[95% Conf.	. Interval]
v1 <-							
-	y2	1.284182	.0217063	59.16	0.000	1.241638	1.326725
	x1	1.28408	.0290087	44.27	0.000	1.227224	1.340936
	x2	1.293582	.0287252	45.03 51.31	0.000	1.237282	1.349883
		./908832	.0155321	51.31	0.000	./664428	.82/32/3
v2 <-							
-	x1	.9959898	.0099305	100.30	0.000	.9765263	1.015453
	x2	1.002053	.0099196	101.02	0.000	.9826106	1.021495
	x3	.9938048	.0096164	103.34	0.000	.974957	1.012653
	x4	.9984898	.0095031	105.07	0.000	.9798642	1.017115
	x5	1.002206	.0095257	105.21	0.000	.9835358	1.020876
	L	.7968852	.0155321	51.31	0.000	.7664428	.8273275
	_cons	.0089433	.0099196	0.90	0.367	0104987	.0283853
y1							
2 -	/cut1	-1.017707	.0291495	-34.91	0.000	-1.074839	9605751
	/cut2	4071202	.0273925	-14.86	0.000	4608085	3534319
	/cut3	.4094317	.0275357	14.87	0.000	.3554628	.4634006
	/cut4	1.017637	.029513	34.48	0.000	.9597921	1.075481
	var(L)	1	(constraine	ed)			
va	ar(e.y2)	.348641	.0231272			.3061354	.3970482

Ordered Probit with Endogeneity: Transformation

```
. nlcom b[v1:v2]/sqrt(1 + b[v1:L]^2)
      _nl_1: _b[y1:y2]/sqrt(1 + _b[y1:L]^2)
                    Coef.
                            Std. Err.
                                                 P>|z|
                                                            [95% Conf. Interval]
                                            z
      nl 1
                 1.004302
                            .0189557
                                         52.98
                                                 0.000
                                                            .9671491
                                                                        1.041454
. nlcom b[v1:x1]/sqrt(1 + b[v1:L]^2)
      _nl_1: _b[y1:x1]/sqrt(1 + _b[y1:L]^2)
                    Coef
                            Std. Err.
                                                 P>|z|
                                                            [95% Conf. Interval]
                                            Z
      _nl_1
                 1.004222
                            .0214961
                                         46.72
                                                 0.000
                                                            .9620909
                                                                        1.046354
. nlcom _b[y1:x2]/sqrt(1 + _b[y1:L]^2)
      nl 1: b[v1:x2]/sqrt(1 + b[v1:L]^2)
                                                            [95% Conf. Interval]
                    Coef.
                            Std. Err.
                                                 P>|z|
                                            Z
      _nl_1
                 1.011654
                            .0213625
                                         47.36
                                                 0.000
                                                            .9697838
                                                                        1.053523
```

Conclusion

- We established a general framework for endogeneity where the problem is that the unobservables are related to observables
- We saw solutions using instrumental variables or modeling the correlation between unobservables
- We saw how to use gmm and gsem to estimate this models both in the cases of existing Stata commands and situations not available in Stata