Dealing With and Understanding Endogeneity

Enrique Pinzón

StataCorp LP

October 20, 2016
Barcelona

Importance of Endogeneity

- Endogeneity occurs when a variable, observed or unobserved, that is not included in our models, is related to a variable we incorporated in our model.
- Model building
- Endogeneity contradicts:
- Unobservables have no effect or explanatory power - The covariates cause the outcome of interest
- Endogeneity prevents us from making causal claims
- Endogeneity is a fundamental concern of social scientists (first to the party)

Importance of Endogeneity

- Endogeneity occurs when a variable, observed or unobserved, that is not included in our models, is related to a variable we incorporated in our model.
- Model building
- Endogeneity contradicts:
- Unobservables have no effect or explanatory power
- The covariates cause the outcome of interest
- Endogeneity prevents us from making causal claims
- Endogeneity is a fundamental concern of social scientists (first to the party)

Outline

(1) Defining concepts and building our intuition
(2) Stata built in tools to solve endogeneity problems
(3) Stata commands to address endogeneity in non-built-in situations

Defining concepts and building our intuition

Building our Intuition: A Regression Model

The regression model is given by:

$$
\begin{aligned}
y_{i} & =\beta_{0}+\beta_{1} x_{1 i}+\ldots+\beta_{k} x_{k i}+\varepsilon_{i} \\
E\left(\varepsilon_{i} \mid x_{1 i}, \ldots, x_{k i}\right) & =0
\end{aligned}
$$

- Once we have the information of our regressors, on average what we did not include in our model has no importance.

$$
E\left(y_{i} \mid x_{1 i}, \ldots, x_{k i}\right)=\beta_{0}+\beta_{1} x_{1 i}+\ldots+\beta_{k} x_{k i}
$$

Building our Intuition: A Regression Model

The regression model is given by:

$$
\begin{aligned}
y_{i} & =\beta_{0}+\beta_{1} x_{1 i}+\ldots+\beta_{k} x_{k i}+\varepsilon_{i} \\
E\left(\varepsilon_{i} \mid x_{1 i}, \ldots, x_{k i}\right) & =0
\end{aligned}
$$

- Once we have the information of our regressors, on average what we did not include in our model has no importance.

$$
E\left(y_{i} \mid x_{1 i}, \ldots, x_{k i}\right)=\beta_{0}+\beta_{1} x_{1 i}+\ldots+\beta_{k} x_{k i}
$$

Graphically

Examples of Endogeneity

- We want to explain wages and we use years of schooling as a covariate. Years of schooling is correlated with unobserved ability, and work ethic.
- We want to explain to probability of divorce and use employment status as a covariate. Employment status might be correlated to unobserved economic shocks.
- We want to explain graduation rates for different school districts and use the fraction of the budget used in education as a covariate. Budget decisions are correlated to unobservable political factors.
- Estimating demand for a good using prices. Demand and prices are determined simultaneously.

A General Framework

If the unobservables, what we did not include in our model is correlated to our covariates then:

$$
E(\varepsilon \mid X) \neq 0
$$

- Omitted variable "bias"
- Simultaneity
- Functional form misspecification
- Selection "bias"

A useful implication of the above condition

A General Framework

If the unobservables, what we did not include in our model is correlated to our covariates then:

$$
E(\varepsilon \mid X) \neq 0
$$

- Omitted variable "bias"
- Simultaneity
- Functional form misspecification
- Selection "bias"

A useful implication of the above condition

A General Framework

If the unobservables, what we did not include in our model is correlated to our covariates then:

$$
E(\varepsilon \mid X) \neq 0
$$

- Omitted variable "bias"
- Simultaneity
- Functional form misspecification
- Selection "bias"

A useful implication of the above condition

$$
E\left(X^{\prime} \varepsilon\right) \neq 0
$$

Example 1: Omitted Variable "Bias"

The true model is given by

$$
\begin{aligned}
y & =\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\varepsilon \\
E\left(\varepsilon \mid x_{1}, x_{2}\right) & =0
\end{aligned}
$$

the researcher does not incorporate x_{2}, i.e. they think

$$
y=\beta_{0}+\beta_{1} x_{1}+\nu
$$

The objective is to estimate β_{1}. In our framework we get a consistent estimate if

$$
E\left(\nu \mid x_{1}\right)=0
$$

Example 1: Omitted Variable "Bias"

The true model is given by

$$
\begin{aligned}
y & =\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\varepsilon \\
E\left(\varepsilon \mid x_{1}, x_{2}\right) & =0
\end{aligned}
$$

the researcher does not incorporate x_{2}, i.e. they think

$$
y=\beta_{0}+\beta_{1} x_{1}+\nu
$$

The objective is to estimate β_{1}. In our framework we get a consistent estimate if

$$
E\left(\nu \mid x_{1}\right)=0
$$

Example 1: Endogeneity

Using the definition of the true model

$$
\begin{aligned}
y & =\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\varepsilon \\
E\left(\varepsilon \mid x_{1}, x_{2}\right) & =0
\end{aligned}
$$

We know that

$E\left(\nu \mid x_{1}\right)=\beta_{2} E\left(x_{2} \mid x_{1}\right)$
$E\left(\nu \mid x_{1}\right)=0$ only if $\beta_{2}=0$ or x_{2} and x_{1} are uncorrelated

Example 1: Endogeneity

Using the definition of the true model

$$
\begin{aligned}
y & =\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\varepsilon \\
E\left(\varepsilon \mid x_{1}, x_{2}\right) & =0
\end{aligned}
$$

We know that

$$
\nu=\beta_{2} x_{2}+\varepsilon
$$

and

$$
E\left(\nu \mid x_{1}\right)=\beta_{2} E\left(x_{2} \mid x_{1}\right)
$$

$E\left(\nu \mid x_{1}\right)=0$ only if $\beta_{2}=0$ or x_{2} and x_{1} are uncorrelated

Example 1 Simulating Data

. clear
. set obs 10000
number of observations (_N) was 0, now 10,000
. set seed 111
. // Generating a common component for x 1 and x 2

- generate $a=r c h i 2(1)$
. // Generating x1 and x2
- generate $x 1=$ rnormal() $+a$
- generate $x 2=\operatorname{rchi2}(2)-3+a$
. generate e rchi2(1) - 1
. // Generating the outcome
- generate $y=1-x 1+x 2+e$

Example 1 Estimation

. // estimating true model
. quietly regress y x1 x2
. estimates store real
. //estimating model with omitted variable

- quietly regress y x1
. estimates store omitted
. estimates table real omitted, se

Variable	real	omitted
x1	-.98710456	-.31950213
x2	.00915198	.01482454
_cons	.09993928	
	.01678263	.32968254

Example 2: Simultaneity in a market equilibrium

The demand and supply equations for the market are given by

$$
\begin{aligned}
Q_{d} & =\beta P_{d}+\varepsilon_{d} \\
Q_{s} & =\theta P_{s}+\varepsilon_{s}
\end{aligned}
$$

If a researcher wants to estimate Q^{d} and ignores that P^{d} is simultaneously determined, we have an endogeneity problem that fits in our framework.

Example 2: Assumptions and Equilibrium

We assume:

- All quantities are scalars
- $\beta<0$ and $\theta>0$
- $E\left(\varepsilon_{d}\right)=E\left(\varepsilon_{s}\right)=E\left(\varepsilon_{d} \varepsilon_{s}\right)=0$
- $E\left(\varepsilon_{d}^{2}\right) \equiv \sigma_{d}^{2}$

The equilibrium prices and quantities are given by:

$$
\begin{aligned}
P & =\frac{\varepsilon_{s}-\varepsilon_{d}}{\beta-\theta} \\
Q & =\frac{\beta \varepsilon_{s}-\theta \varepsilon_{d}}{\beta-\theta}
\end{aligned}
$$

Example 2: Endogeneity

This is a simple linear model so we can verify if

$$
E\left(P_{d} \varepsilon_{d}\right)=0
$$

Using our equilibrium conditions and the fact that ε_{s} and ε_{d} are uncorrelated we get

Example 2: Endogeneity

This is a simple linear model so we can verify if

$$
E\left(P_{d} \varepsilon_{d}\right)=0
$$

Using our equilibrium conditions and the fact that ε_{s} and ε_{d} are uncorrelated we get

$$
\begin{aligned}
E\left(P_{d} \varepsilon_{d}\right) & =E\left(\frac{\varepsilon_{s}-\varepsilon_{d}}{\beta-\theta} \varepsilon_{d}\right) \\
& =\frac{E\left(\varepsilon_{s} \varepsilon_{d}\right)}{\beta-\theta}-\frac{E\left(\varepsilon_{d}^{2}\right)}{\beta-\theta} \\
& =-\frac{E\left(\varepsilon_{d}^{2}\right)}{\beta-\theta} \\
& =-\frac{\sigma_{d}^{2}}{\beta-\theta}
\end{aligned}
$$

Example 2: Graphically

Example 3: Functional Form Misspecification

Suppose the true model is given by:

$$
\begin{aligned}
y & =\sin (x)+\varepsilon \\
E(\varepsilon \mid x) & =0
\end{aligned}
$$

But the researcher thinks that:

Example 3: Functional Form Misspecification

Suppose the true model is given by:

$$
\begin{aligned}
y & =\sin (x)+\varepsilon \\
E(\varepsilon \mid x) & =0
\end{aligned}
$$

But the researcher thinks that:

$$
y=x \beta+\nu
$$

Example 3: Real vs. Estimated Predicted values

Example 3: Endogeneity

Adding zero we have

For our estimates to be consistent we need to have $E(\nu \mid X)=0$ but

Example 3: Endogeneity

Adding zero we have

$$
\begin{aligned}
& y=x \beta-x \beta+\sin (x)+\varepsilon \\
& y=x \beta+\nu \\
& \nu \equiv \sin (x)-x \beta+\varepsilon
\end{aligned}
$$

For our estimates to be consistent we need to have $E(\nu \mid X)=0$ but

Example 3: Endogeneity

Adding zero we have

$$
\begin{aligned}
& y=x \beta-x \beta+\sin (x)+\varepsilon \\
& y=x \beta+\nu \\
& \nu \equiv \sin (x)-x \beta+\varepsilon
\end{aligned}
$$

For our estimates to be consistent we need to have $E(\nu \mid X)=0$ but

$$
\begin{aligned}
E(\nu \mid x) & =\sin (x)-x \beta+E(\varepsilon \mid x) \\
& =\sin (x)-x \beta \\
& \neq 0
\end{aligned}
$$

Example 4: Sample Selection

- We observe the outcome of interest for a subsample of the population
- The subsample we observe is based on a rule For example we observe y if $y 2 \geq 0$
- In a linear framework we have that:

$$
E\left(y \mid X_{1}, y_{2} \geq 0\right)=X_{1} \beta+E\left(\varepsilon \mid X_{1}, y_{2} \geq 0\right)
$$

- If $E\left(\varepsilon \mid X_{1}, y_{2} \geq 0\right) \neq 0$ we have selection bias
- In the classic framework this happens if the selection rule is related to the unobservables

Example 4: Endogeneity

If we define $X \equiv\left(X_{1}, y_{2} \geq 0\right)$ we are back in our framework

$$
E(y \mid X)=X_{1} \beta+E(\varepsilon \mid X)
$$

And we can define endogeneity as happening when:

$$
E(\varepsilon \mid X) \neq 0
$$

Example 4: Simulating data

. clear
. set seed 111
. quietly set obs 20000
. // Generating Endogenous Components
. matrix $C=(1, .8 \backslash .8,1)$

- quietly drawnorm e v, corr (C)
. // Generating exogenous variables
- generate $x 1=\operatorname{rbeta}(2,3)$
- generate $x 2=\operatorname{rbeta}(2,3)$
- generate $\times 3=$ rnormal()
. generate $x 4=r \operatorname{chi} 2(1)$
. // Generating outcome variables
- generate $y 1=x 1-x 2+e$
. generate $y^{2}=2+x 3-x 4+v$
. quietly replace $y 1=$. if $y^{2}<=0$

Example 4: Estimation

Source	SS	df	MS	Number of obs F (2, 14845) Prob > F R-squared Adj R-squared Root MSE			$\begin{aligned} & 14,847 \\ & 813.88 \\ & 0.0000 \\ & 0.0988 \\ & 0.0987 \\ & .94485 \end{aligned}$
Model	1453.18513	2	726.592566				
Residual	13252.8872	14,845	. 892750906				
Total	14706.0723	14,847	. 990508004				
y1	Coef.	Std. Err.	t	$P>\|t\|$	[95\% Conf.		Interval]
x1	1.153796	. 0290464	39.72	0.000	1.0968	862	1.210731
x2	-. 7896144	. 0287341	-27.48	0.000	-. 84593	369	-. 7332919

What have we learnt

- Endogeneity manifests itself in many forms
- This manifestations can be understood within a general framework
- Mathematically $E(\varepsilon \mid X) \neq 0$ which implies $E(X \varepsilon) \neq 0$
- Considerations that were not in our model (variables, selection, simultaneity, functional form) affect the system and the model.

Built-in tools to solve for endogeneity

- ivregress, ivpoisson, ivtobit, ivprobit, xtivreg
- etregress, etpoisson, eteffects
- biprobit, reg3, sureg, xthtaylor
- heckman, heckprobit, heckoprobit

Instrumental Variables

- We model Y as a function of X_{1} and X_{2}
- X_{1} is endogenous
- We can model X_{1}
- X_{1} can be divided into two parts; an endogenous part and an exogenous part

$$
X_{1}=f\left(X_{2}, Z\right)+\nu
$$

- Z are variables that affect Y only through X_{1}
- Z are referred to as intrumental variables or excluded instruments

Instrumental Variables

- We model Y as a function of X_{1} and X_{2}
- X_{1} is endogenous
- We can model X_{1}
- X_{1} can be divided into two parts; an endogenous part and an exogenous part

$$
X_{1}=f\left(X_{2}, Z\right)+\nu
$$

- Z are variables that affect Y only through X_{1}
- Z are referred to as intrumental variables or excluded instruments

Instrumental Variables

- We model Y as a function of X_{1} and X_{2}
- X_{1} is endogenous
- We can model X_{1}
- X_{1} can be divided into two parts; an endogenous part and an exogenous part

$$
X_{1}=f\left(X_{2}, Z\right)+\nu
$$

- Z are variables that affect Y only through X_{1}
- Z are referred to as intrumental variables or excluded instruments

What Are These Instruments Anyway?

- We are modeling income as a function of education. Education is endogenous. Quarter of birth is an instrument, albeit weak.
- We are modeling the demand for fish. We need to exclude the supply shocks and keep only the demand shocks. Rain is an instrument.

Solving for Endogeneity Using Instrumental Variables

- The solution is the get a consistent estimate of the exogenous part and get rid of the endogenous part
- An example is two-stage least squares
- In two-stage least squares both relationships are linear

Simulating the Model

. clear
. set seed 111
. set obs 10000
number of observations (_N) was 0, now 10,000

- generate $a=r c h i 2(2)$
- generate $e=\operatorname{rchi2}(1)-3+a$
- generate $\mathrm{v}=\operatorname{rchi2}(1)-3+\mathrm{a}$
- generate $x 2=$ rnormal()
- generate $z=$ rnormal()
. generate $\mathrm{x} 1=1-\mathrm{z}+\mathrm{x} 2+\mathrm{v}$
- generate $y=1-x 1+x 2+e$

Estimation using Regression

Source	SS	df	MS	Number of obs F (2, 9997) Prob > F R-squared Adj R-squared Root MSE			10,000
Model	12172.8278	2	6086.41388				571.70 0.0000
Residual	38713.3039	9,997	3.87249214				0.2392
							0.2391
Total	50886.1317	9,999	5.08912208				1.9679
Y	Coef.	Std. Err.	t	$\mathrm{P}>\|\mathrm{t}\|$	[95\% Conf.		Interval]
x 1	-. 4187662	. 007474	-56.03	0.000	-. 4334167		-. 4041156
x2	. 4382175	. 0209813	20.89	0.000	. 39709		. 479345
_cons	. 4425514	. 0210665	21.01	0.000	. 4012569		. 4838459

. estimates store reg

Manual Two-Stage Least Squares (Wrong S.E.)

```
. quietly regress x1 z x2
. predict double x1hat
(option xb assumed; fitted values)
. preserve
. replace x1 = x1hat
(10,000 real changes made)
. quietly regress y x1 x2
. estimates store manual
. restore
```


Estimation using Two-Stage Least Squares (2SLS)

Estimation

. estimates table reg tsls manual, se

Variable	reg	tsls	manual
x1	-.41876618	-1.0152049	-1.0152049
x2	.007474	.02529419	.02026373
	.02098126	1.0055965	1.0055965
_cons	.44255137	.03488076	.02794373
	.02106646	.03579622	.02867713

legend: b/se

Other Alternatives

- sem, gsem, gmm
- These are tools to construct our own estimation
- sem and gsem model the unobservable correlation in multiple equations
- gmm is usually used to explicitly model a system of equations where we model the endogenous variable

What are sem and gsem

- SEM is for structural equation modeling and GSEM is for generalized structural equation modeling
- sem fits linear models for continuous responses. Models only allow for one level.
- gsem continuous, binary, ordinal, count, or multinomial, responses and multilevel modeling.
- Estimation is done using maximum likelihood
- It allows unobserved components in the equations and correlation between equations

What are sem and gsem

- SEM is for structural equation modeling and GSEM is for generalized structural equation modeling
- sem fits linear models for continuous responses. Models only allow for one level.
- gsem continuous, binary, ordinal, count, or multinomial, responses and multilevel modeling.
- Estimation is done using maximum likelihood
- It allows unobserved components in the equations and correlation between equations

What is gmm

- Generalized Method of Moments
- Estimation is based on being to write objects in the form

$$
E[g(x, \theta)]=0
$$

- θ is the parameter of interest
- If you can solve directly we have a method of moments.
- When we have more moments than parameters we need to give weights to the different moments and cannot solve directly.
- The weight matrix gives more weight to the more efficient moments.

What is gmm

- Generalized Method of Moments
- Estimation is based on being to write objects in the form

$$
E[g(x, \theta)]=0
$$

- θ is the parameter of interest
- If you can solve directly we have a method of moments.
- When we have more moments than parameters we need to give weights to the different moments and cannot solve directly.
- The weight matrix gives more weight to the more efficient moments.

Estimation Using sem

. $\operatorname{sem}(y<-x 2 x 1)(x 1<-x 2 z), \operatorname{cov}(e \cdot y * e . x 1)$ nolog
Endogenous variables
Observed: y x1
Exogenous variables
Observed: x2 z
Structural equation model Number of obs $=10,000$
Estimation method $=\mathrm{ml}$
Log likelihood $=-71917.224$

Estimation Using gmm

. 9 mm (eq1:	- \{xb: x1	2 _cons \})	/ / /			
> (eq2:	- \{xpi: x2	_Cons \}),	//1/			
> instrum	$s(x 2 z)$			///		
> winitial	unadjusted,	independen	nolog			
Final GMM criterion $Q(b)=4.70 e-33$						
note: model is exactly identified						
GMM estimation						
Number of parameters $=6$						
Number of moments $=6$						
Initial weight matrix: Un		Unadjusted		Number of obs		10,000
GMM weight matrix: R						
Robust						
	Coef.	Std. Err.	z	$P>\|z\|$	[95\% Conf.	Interval]
$x \mathrm{~b}$						
x 1	-1.015205	. 0252261	-40.24	0.000	-1.064647	-. 9657627
x 2	1.005596	. 0362111	27.77	0.000	. 934624	1.076569
_cons	1.042625	. 0363351	28.69	0.000	. 9714094	1.11384
xpi						
x2	. 9467476	. 0251266	37.68	0.000	. 8975004	. 9959949
Z	-. 987925	. 0233745	-42.27	0.000	-1.033738	-. 9421118
_cons	1.011304	. 0243761	41.49	0.000	. 9635274	1.05908

Instruments for equation eq1: x2 z _cons
Instruments for equation eq2: $x 2 \mathrm{z}$ _cons
. estimates store gmm

$$
\begin{aligned}
y & =\beta_{0}+x_{1} \beta_{1}+x_{2} \beta_{2}+\varepsilon \\
x_{1} & =\pi_{0}+x_{2} \pi_{1}+z \pi_{2}+\nu \\
Z & \equiv\left(x_{2} \quad z\right) \\
E(Z \varepsilon) & =E(Z \nu)=0
\end{aligned}
$$

Where

$$
\begin{aligned}
y & =\beta_{0}+x_{1} \beta_{1}+x_{2} \beta_{2}+\varepsilon \\
x_{1} & =\pi_{0}+x_{2} \pi_{1}+z \pi_{2}+\nu \\
Z & \equiv\left(x_{2} \quad z\right) \\
E(Z \varepsilon) & =E(Z \nu)=0
\end{aligned}
$$

Where

$$
\begin{aligned}
\varepsilon & =y-\left(\beta_{0}+x_{1} \beta_{1}+x_{2} \beta_{2}\right) \\
\nu & =x_{1}-\left(\pi_{0}+x_{2} \pi_{1}+z \pi_{2}\right)
\end{aligned}
$$

Summarizing the results of our estimation

Variable	reg	tsls	sem	gmm
x 1	-. 41876618	-1.0152049	-1.0152049	-1.0152049
	. 007474	. 02529419	. 02529419	. 02522609
x2	. 4382175	1.0055965	1.0055965	1.0055965
	. 02098126	. 03488076	. 03488076	. 03621111
_cons	. 44255137	1.0426249	1.0426249	1.0426249
	. 02106646	. 03579622	. 03579622	. 03633511

Control Function Type Solutions

- The key element here is to model the correlation between the unobservables between the endogenous variable equation and the outcome equation
- This is what is referred to as a control function approach
- Heckman selection is similar to this approach

Heckman Selection

. clear
. set seed 111
. quietly set obs 20000
. // Generating Endogenous Components
. matrix C = (1, .4\ .4, 1)

- quietly drawnorm e v, corr (C)
. // Generating exogenous variables
- generate $\mathrm{x} 1=\operatorname{rbeta}(2,3)$
- generate $x 2=\operatorname{rbeta}(2,3)$
- generate $\times 3=$ rnormal()
- generate $\mathrm{x} 4=$ rchi2(1)
. // Generating outcome variables
. generate $\mathrm{y} 1=-1-\mathrm{x} 1-\mathrm{x} 2+\mathrm{e}$
. generate $\mathrm{y}^{2}=(1+\mathrm{x} 3-\mathrm{x} 4) * .5+\mathrm{v}$
. quietly replace $y 1=$. if $y 2<=0$
. generate yp = y1 !=.

Heckman Solution

- Estimate a probit model for the selected observations as a function of a set of variables Z
- Then use the probit models to estimate:

- In other words regress y on X_{1} and $\frac{\phi\left(Z_{\gamma}\right)}{\Phi\left(Z_{\gamma}\right)}$

Heckman Solution

- Estimate a probit model for the selected observations as a function of a set of variables Z
- Then use the probit models to estimate:

$$
\begin{aligned}
E\left(y \mid X_{1}, y_{2} \geq 0\right) & =X_{1} \beta+E\left(\varepsilon \mid X_{1}, y_{2} \geq 0\right) \\
& =X_{1} \beta+\beta_{s} \frac{\phi(Z \gamma)}{\Phi(Z \gamma)}
\end{aligned}
$$

- In other words regress y on X_{1} and $\frac{\phi\left(Z_{\gamma}\right)}{\Phi(Z \gamma)}$

Heckman Estimation

Two Steps Heuristically

. quietly probit yp x3 x4

- matrix $A=e(b)$
. quietly predict double xb, xb
. quietly generate double mills = normalden(xb)/normal(xb)
- quietly regress y1 x1 x2 mills
. matrix $B=A, \quad$ b [x1], _b[x2], _b[_cons], _b[mills]

GMM Estimation

. local $\mathrm{xb}\{\mathrm{b} 1\} * \mathrm{x} 1+\{\mathrm{b} 2\} * \mathrm{x} 2+\{\mathrm{b} 0 \mathrm{~b}\}$
. local mills (normalden(\{xp:\})/normal(\{xp:\}))
. gmm (eq2: yp*(normalden(\{xp: x3 x4_cons\})/normal(\{xp:\})) - ///
$>\quad(1-y p) *(\operatorname{normalden}(-\{x p:\}) / \operatorname{normal}(-\{x p:\})))$ ///

```
> (eq1: y1 - (`xb') - {b3}*(`mills')) ///
```

$>\quad\left(e q 3:\left(y 1-\left(\mathrm{yb}^{\prime}\right)-\{\mathrm{b} 3\} *\left(` m i l l s^{\prime}\right)\right) \star \mathrm{mills}^{\prime}\right), \quad / / /$
$>$ instruments (eq1: x1 x2) ///
$>$ instruments(eq2: x3 x4) ///
> winitial(unadjusted, independent) quickderivatives ///
> nocommonesample from(B)
Step 1
Iteration 0: GMM criterion $Q(b)=2.279 \mathrm{e}-19$
Iteration 1: GMM criterion $\mathrm{Q}(\mathrm{b})=2.802 \mathrm{e}-34$
Step 2
Iteration 0: GMM criterion $Q(b)=5.387 \mathrm{e}-34$
Iteration 1: GMM criterion $Q(b)=5.387 \mathrm{e}-34$
note: model is exactly identified
GMM estimation
Number of parameters $=7$
Number of moments $=7$
Initial weight matrix: Unadjusted Number of obs = *
GMM weight matrix: Robust

	Coef.	Robust Std. Err.	z	$\mathrm{P}>\|\mathrm{z}\|$	[95\% Conf.	Interval]
x3	. 4992753	. 0106148	47.04	0.000	. 4784706	. 52008
x4	-. 4779557	. 0104455	-45.76	0.000	-. 4984285	-. 4574828
_cons	. 4798264	. 012609	38.05	0.000	. 4551132	. 5045397
/b1	-1.115395	. 0472637	-23.60	0.000	-1.20803	-1.02276
/b2	-1.048694	. 0455168	-23.04	0.000	-1.137905	-. 9594823
/b0b	-. 9514073	. 0332245	-28.64	0.000	-1.016526	-. 8862885
/b3	. 4199921	. 0296825	14.15	0.000	. 3618155	. 4781686

* Number of observations for equation eq2: 20000 Number of observations for equation eq1: 10417 Number of observations for equation eq3: 10417

SEM Estimation of Heckman

[^0]
Comparing SEM and HECKMAN

. estimates table heckman hecksem, eq(1) se /// keep (\#1:x1 \#1:x2 \#1:L \#1:_cons)

Variable	heckman	hecksem
x1	-1.117284	-1.1172841
x2	-1.04647661	.04647661
L	.04588611	.04588611
		.72875877
_cons	-.95591918	-.02963515
	.03290222	.03290166

legend: b/se

Non Built-In Situations

Control Function Approach in a Linear Model: The Model

. clear
. set seed 111
. set obs 10000
number of observations (_N) was 0, now 10,000

- generate $a=r c h i 2(2)$
- generate $e \operatorname{rchi2}(1)-3+a$
. generate $\mathrm{v}=\operatorname{rchi2}(1)-3+\mathrm{a}$
. generate $\mathrm{x} 2=$ rnormal()
- generate $z=$ rnormal()
- generate $\mathrm{x} 1=1-\mathrm{z}+\mathrm{x} 2+\mathrm{v}$
. generate $y=1-x 1+x 2+e$

Estimation Using a Control Function Approach

- The underlying model is

$$
\begin{aligned}
y & =X_{1} \beta_{1}+X_{2} \beta_{2}+\varepsilon \\
X_{2} & =X_{1} \Pi_{1}+Z \Pi_{2}+\nu \\
\varepsilon & =\nu \rho+\epsilon \\
E\left(\epsilon \mid X_{1}, X_{2}\right) & =0
\end{aligned}
$$

- This implies that:

- We can regress y on X_{1}, X_{2}, and ν
- We can test for endogeneity

Estimation Using a Control Function Approach

- The underlying model is

$$
\begin{aligned}
y & =X_{1} \beta_{1}+X_{2} \beta_{2}+\varepsilon \\
X_{2} & =X_{1} \Pi_{1}+Z \Pi_{2}+\nu \\
\varepsilon & =\nu \rho+\epsilon \\
E\left(\epsilon \mid X_{1}, X_{2}\right) & =0
\end{aligned}
$$

- This implies that:

$$
y=X_{1} \beta_{1}+X_{2} \beta_{2}+\nu \rho+\epsilon
$$

- We can regress y on X_{1}, X_{2}, and ν
- We can test for endogeneity

Estimation Using a Control Function Approach

- The underlying model is

$$
\begin{aligned}
y & =X_{1} \beta_{1}+X_{2} \beta_{2}+\varepsilon \\
X_{2} & =X_{1} \Pi_{1}+Z \Pi_{2}+\nu \\
\varepsilon & =\nu \rho+\epsilon \\
E\left(\epsilon \mid X_{1}, X_{2}\right) & =0
\end{aligned}
$$

- This implies that:

$$
y=X_{1} \beta_{1}+X_{2} \beta_{2}+\nu \rho+\epsilon
$$

- We can regress y on X_{1}, X_{2}, and ν
- We can test for endogeneity

Estimation of Control Function Using gmm

Instruments for equation eq3: x2 z _cons
Instruments for equation eq1: $x 1 \mathrm{x}^{-}$_cons
Instruments for equation eq2: _cons

Ordered Probit with Endogeneity

The model is given by:

$$
\begin{aligned}
y_{1}^{*} & =y_{2} \beta+x \Pi+\varepsilon \\
y_{2} & =x \gamma_{1}+z \gamma_{2}+\nu \\
y_{1} & =j \text { if } \kappa_{j-1}<y_{1}^{*}<\kappa_{j} \\
\kappa_{0} & =-\infty<\kappa_{1}<\ldots<\kappa_{k}=\infty \\
\varepsilon & \sim N(0,1) \\
\operatorname{cov}(\nu, \varepsilon) & \neq 0
\end{aligned}
$$

gsem Representation

$$
\begin{aligned}
y_{1 g s e m}^{*} & =y_{2} b+x \pi+t+L \alpha \\
t & \sim N(0,1) \\
L & \sim N(0,1)
\end{aligned}
$$

Where $y_{1 \text { gsem }}^{*}=M y_{1}^{*}$ and M is a constant. Noting that

Which implies that

gsem Representation

$$
\begin{aligned}
y_{1 g s e m}^{*} & =y_{2} b+x \pi+t+L \alpha \\
t & \sim N(0,1) \\
L & \sim N(0,1)
\end{aligned}
$$

Where $y_{1 \text { gsem }}^{*}=M y_{1}^{*}$ and M is a constant. Noting that

$$
\begin{aligned}
y_{1 \text { gsem }}^{*} & =M y_{1}^{*} \\
y_{2} b+x \pi+t+L \alpha & =y_{2} M \beta+x M \Pi+M \varepsilon
\end{aligned}
$$

Which implies that

gsem Representation

$$
\begin{aligned}
y_{1 g s e m}^{*} & =y_{2} b+x \pi+t+L \alpha \\
t & \sim N(0,1) \\
L & \sim N(0,1)
\end{aligned}
$$

Where $y_{1 \text { gsem }}^{*}=M y_{1}^{*}$ and M is a constant. Noting that

$$
\begin{aligned}
y_{1 \text { gsem }}^{*} & =M y_{1}^{*} \\
y_{2} b+x \pi+t+L \alpha & =y_{2} M \beta+x M \Pi+M \varepsilon
\end{aligned}
$$

Which implies that

$$
\begin{aligned}
M \varepsilon & =t+L \alpha \\
M^{2} \operatorname{Var}(\varepsilon) & =\operatorname{Var}(t+L \alpha) \\
M^{2} & =1+\alpha^{2} \\
M & =\sqrt{1+\alpha^{2}}
\end{aligned}
$$

Ordered Probit with Endogeneity: Simulation

```
    clear
. set seed 111
. set obs }1000
number of observations (_N) was 0, now 10,000
. forvalues i = 1/5 {
    2. gen x`i' = rnormal()
    3. }
. mat C = [1,.5 \ . 5, 1]
. drawnorm e1 e2, cov(C)
- gen y2 = 0
. forvalues i = 1/5 {
    2. quietly replace y2 = y2 + x`i'
    3. }
. quietly replace y2 = y2 + e2
. gen y1star = y2 + x1 + x2 + e1
. gen xb1 = y2 + x1 + x2
. gen y1 = 4
. quietly replace y1 = 3 if xb1 + e1 <=. 8
. quietly replace y1 = 2 if xb1 + e1 <=. 3
. quietly replace y1 = 1 if xb1 + e1 <=-.3
. quietly replace y1 = 0 if xb1 + e1 <=-.8
```


Ordered Probit with Endogeneity: Estimation

. gsem (y1 <- y2 x1 x2 L@a, oprobit) (y2 <- x1 x2 x3 x4 x5 L@a), var(L@1) nolog Generalized structural equation model Number of obs $=10,000$

Ordered Probit with Endogeneity: Transformation

Conclusion

- We established a general framework for endogeneity where the problem is that the unobservables are related to observables
- We saw solutions using instrumental variables or modeling the correlation between unobservables
- We saw how to use gmm and gsem to estimate this models both in the cases of existing Stata commands and situations not available in Stata

[^0]: . estimates store hecksem

