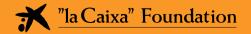
DEMAND FOR DRUGS FOR CHILDHOOD MALARIA IN RURAL MOZAMBIQUE


SERGIO ALONSO - KHÁTIA MUNGUAMBE - ELISA SICURI

Presenter: SERGIO ALONSO

Barcelona Institute for Global Health (ISGlobal)

2014 Spanish Stata Users Group meeting, 23rd October 2014

Outline

Introduction: Context & Objectives.

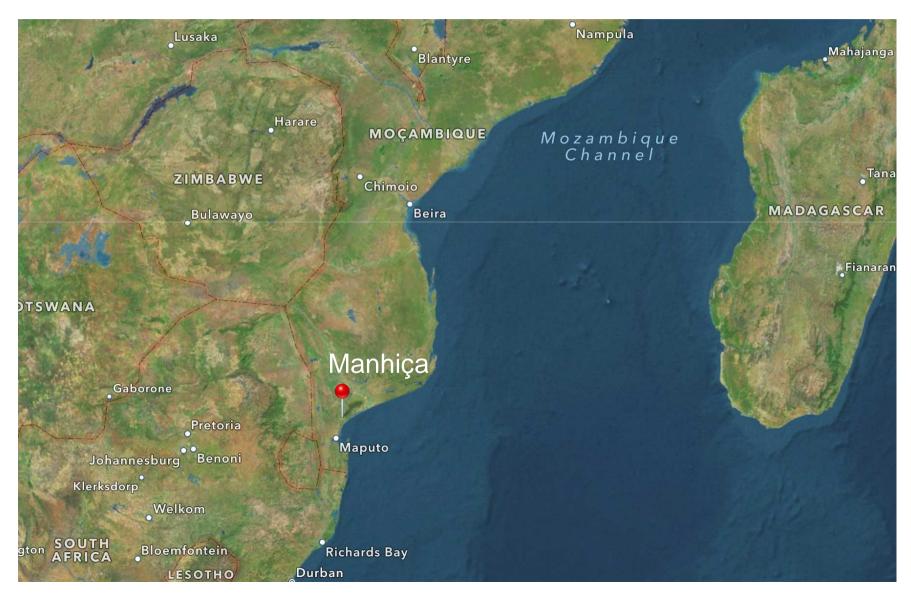
- Methods: Study design & Model specification.
 - Wealth Indicator in low-income countries.

Results: Outcomes and Demand.

Discussion and conclusions.

Introduction: context

- Malaria: infectious disease transmitted by mosquitoes.
- Treatment: Artemisinin-based Combination therapy (ACT).
 High quality but fairly expensive.
- Market failures for ACTs:
 - Supply: limited availability and unknown quality.
 - Demand: lack of information and low access.



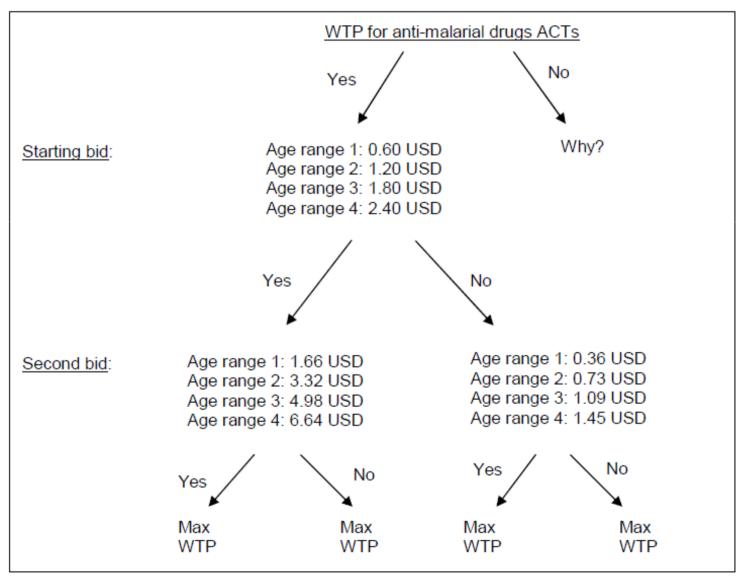
Introduction: objectives

- 1. Estimate willingness-to-pay (WTP) for ACTs in children.
- 2. Quantify financial gaps to improve market for ACTs.
- 3. Evaluate determinants of the demand for treatment.

Introduction: Manhiça

Methods: study design

Survey carried out (N=399) assessing WTP among children with malaria.


Date: 15th Feb – 11th Apr 2012 (high malaria season).

Wealth indicator: Multiple correspondence analysis.

Merging: WTP, Outpatient visits and DSS data.

Methods: bidding game

Methods: specification

- Dependent variable: Willingness-to-pay (WTP)
 - Hypothetical WTP: Highest hypothetical value to pay.
 - Stated WTP: Max. value willing to pay.

Regression analysis:

- Count data: coefficients expressed as incidence rate ratios (IRR).
- OLS: log transforming depending variable.

```
\begin{split} &lnWTP_i\big(E(WTP|\textbf{\textit{x}})\big) = \ \beta_0 + \beta_1 Age_i + \beta_2 Malaria_i + \beta_3 Other\ outpatients + \beta_4 HHMembers_i + \\ &+ \beta_5 Gender_i + \beta_6 Wealth_i + \beta_7 Head\ occupation_i + \beta_8 Head\ education_i + \beta_9 Region_i + \\ &+ \beta_{10} Interviewed_i + \beta_{11} Malariasiblings_i + \beta_{12} Other\ outpatients\ siblings_i \end{split}
```


Methods: study design

BASETMR (household id)

WTP DB (master)

HABIT (demographic info)

```
*Reshaping basetmr and constructing n agre in order to locate the current agregado of individua.
 use basetmr, replace
 local creation = creation[1]
 keep perm id date birth region family ini date exit date
 gen str n agre = region + "-" + family
 drop region family
 sort perm id ini date
 by perm id: gen t= n
 local max = r(max)
 reshape wide ini date exit date n agre, i(perm id) j(t)
∃forvalues k=1/`max' {
     replace exit date'k' = 'creation' if ini date'k' != . & exit date'k' == .
 tempfile intervals
 save `intervals', replace
 *Catching current n agre from basetmr (to Malmarket database):
 use WTP Sergi, replace
 merge m:1 perm id using 'intervals', keepusing(n agre* ini date* exit date*) keep(match master)
 gen str n agre = ""
Forvalues k=1/\max' {
  replace n_agre = n_agre'k' if ini_date'k' <= date_interview & date_interview <= exit_date'k'
Forvalues k=1/'max' {
     drop ini date'k' exit date'k' n agre'k'
 drop merge
```


Wealth Index using MCA

- Multiple Correspondence Analysis (MCA):
 - Preferred to Principal Component Analysis (PCA). MCA allows for categorical variables.
 - Data reduction technique to generate a set of uncorrelated principal components.
 - 1st dimension usually used to define a wealth index, but other dimensions may imply other socio-economic indicators.
 - Usually allows a graphical representation for different indicators.
 - Stata uses similar commands for both methodologies:

```
*PRINCIPAL COMPONENT ANALYSIS:

pca t_const kitchen bath fuel divhouse water waterloc electric

predict score, score

xtile ses = score, nq(3)

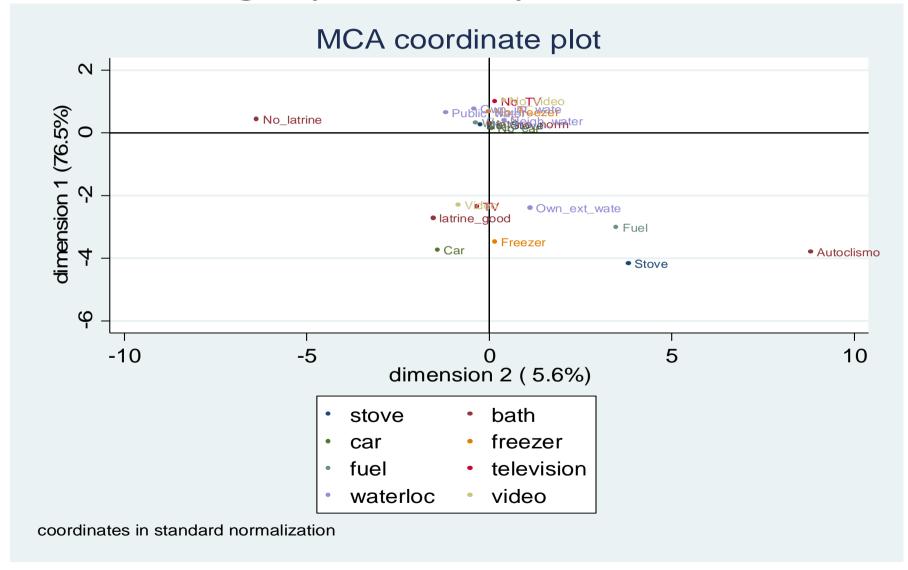
*MULTIPLE CORRESPONDENCE ANALYSIS:

mca t_const kitchen bath fuel divhouse water waterloc electric

estat coordinates, norm(principal)

predict score, norm(principal)

xtile ses = score, nq(3)


mcaplot, overlay legend(off) xline(0) yline(0) scale(.8) msize(0.5)
```

ISGIobal MCA graphical representation

cism

centro de investigação em saúde de

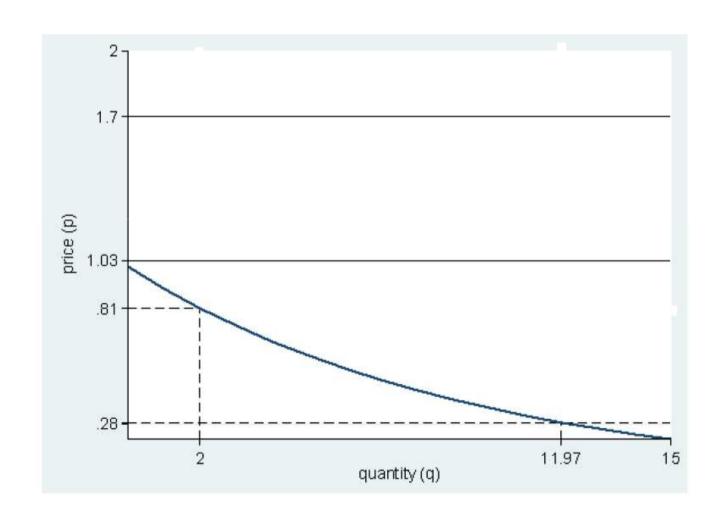
manhica

Results

Characteristics	(%)					
Gender	Boys (54.9%)	Girls (45.1%)				
Age	0-2 years (19.8%)	2-5 years (24.1%)	5-12 years (50.1%)	+12 years (8.0%)		
Head occupation	Agriculture (33.8%)	Manufacture (39.1%)	& Mining	Sales & services (27.1%)		
Head education	None (19.7%)	Literate (2.6%)	Primary school (67.2%)	High /higher school (10.4%)		

Variable	Obs.	Mean (S.D.)	Median (Min – Max)
Hypothetical WTP	399	4.17 (1.93)	5.53 (0 – 8.60)
Stated WTP	399	0.94 (1.22)	0.65 (0 - 8.60)
High subsidy	399	3.80 (1.85)	3.96 (0 – 7.57)
Median subsidy	399	0.96 (0.78)	1.02 (0-2.74)
Low subsidy	399	0.46 (0.48)	0.24 (0 – 1.66)

Results: WTP outcomes



Variables		Poisson (N=380)	Negative Binomial (N=380)	OLS (N=380)
AGE	2-5 years	1.582 (0.301)**	1.572 (0.325)**	0.098 (0.074)
(base: 0-2 years)	5-12 years	1.584 (0.287)**	1.558 (0.305)**	0.113 (0.069)
	≥ 12 years	1.148 (0.320)	1.146 (0.346)	0.019 (0.108)
# EPISODES OF MALARIA		0.899 (0.046)**	0.902 (0.051)*	-0.035 (0.021)*
# OTHER OUTPATIENT VISITS		1.008 (0.037)	1.007 (0.041)	-0.007 (0.015)
GENDER (base: male)	Female	1.130 (0.124)	1.124 (0.136)	0.038 (0.047)
WEALTH STATUS	T2 (poor)	0.743 (0.109)**	0.744 (0.121)*	-0.115 (0.063)*
(base: T1, the most poor)	T3 (least poor)	0.966 (0.135)	0.952 (0.148)	-0.034 (0.064)
HEAD OCCUPATION	Manufacturing & mining	1.292 (0.193)*	1.303 (0.215)	0.118 (0.062)*
(base: agriculture)	Sales & other services	1.409 (0.227)**	1.421 (0.255)**	0.144 (0.070)**
HEAD EDUCATION	Literate	1.085 (0.369)	1.058 (0.408)	0.042 (0.155)
(base: no education)	Primary school	0.946 (0.162)	0.941 (0.177)	-0.049 (0.700)
	High school	0.906 (0.238)	0.906 (0.262)	-0.040 (0.111)
	Higher education	1.106 (0.378)	0.953 (0.395)	-0.122 (0.169)
CONSTANT		0.720 (0.219)	0.733 (0.247)	0.505 (0.125)***
	Alpha	-	-0.214 (0.334)***	-
	LR Chi-squared	41.25	32.81	-
	F statistic	-	-	1.28

Results: demand

Discussion/Conclusion

- 1. Mean WTP=0.94 USD/treat episode. Lower WTP than for prevention (WTP=2.97 USD/bednet).
- 2. Important gap between ACT price and WTP. Financial need: subsidy of at least 0.46 USD/episode.
- 3. Significant WTP determinants: age, number of malaria episodes, wealth and household head occupation.
- 4. Need to improve market demand.

Acknowledgments:

- Llorenç Quintó & Elisa de Lazzari
- Responsibles of the drug outlets & caretakers involved in the study.

- Fieldworkers: Fernando, Gil, Felizmina, Talita and MiPPAD team.

SGIODABarcelona
Institute for
Global Health