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Joint modeling of longitudinal and survival data

Motivation

Many studies collect both longitudinal (measurements) data
and survival-time data.

Longitudinal (or panel, or repeated-measures) data are data in
which a response variable is measured at different time points
such as blood pressure, weight, or test scores measured over
time.

Survival-time or event history data record times until an event
of interest such as times until a heart attack or times until
death from cancer.
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Joint modeling of longitudinal and survival data

Motivation

In the absence of correlation between longitudinal and survival
outcomes, each outcome can be analyzed separately.

Longitudinal analyses include fitting linear mixed models.

Survival analyses include fitting semiparametric (Cox)
proportional hazards models or parametric survival models
such as exponential and Weibull.

When longitudinal and survival outcomes are related, they
must be analyzed jointly to avoid potentially biased results.
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Joint modeling of longitudinal and survival data

Motivation

Joint analyses are useful to:

Account for informative dropout in the analysis of longitudinal
data;

Study effects of baseline covariates on longitudinal and
survival outcomes; or

Study effects of time-dependent covariates on the survival
outcome.

In this presentation, I will concentrate on the first two applications.

Yulia Marchenko (StataCorp) 5 / 55



Joint modeling of longitudinal and survival data

Motivation

PANSS study

Consider Positive and Negative Symptom Scale (PANSS) data
from a clinical trial comparing different drug treatmeans for
schizophrenia (Diggle [1998]).

We are interested in modeling the total score of the PANSS
measurements, which is used to measure psychiatric disorder,
over time for each of the drug treatments. The smaller the
score the better.

Six original treatments are combined into three: placebo,
haloperidol (reference), and risperidone (novel therapy).

For details about this study and its analyses, see Diggle
(1998) and Henderson (2000).
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Joint modeling of longitudinal and survival data

Motivation

PANSS study

We consider a subset of the original data:

. use panss

(PANSS scores from a study of drug treatments for schizophrenia)

. describe

Contains data from panss.dta
obs: 150 PANSS scores from a study of

drug treatments for
schizophrenia

vars: 11 29 Aug 2016 12:07

size: 3,150 (_dta has notes)

storage display value
variable name type format label variable label

id int %8.0g Patient identifier
panss0 int %8.0g PANSS score at week 0

panss1 int %8.0g PANSS score at week 1
panss2 int %8.0g PANSS score at week 2

panss4 int %8.0g PANSS score at week 4
panss6 int %8.0g PANSS score at week 6
panss8 int %8.0g PANSS score at week 8

treat byte %11.0g treatlab Treatment identifier:
1=Haloperidol, 2=Placebo,

3=Risperidone
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Joint modeling of longitudinal and survival data

Motivation

PANSS study

nobs byte %8.0g Number of nonmissing
measurements, between 1 and 6

droptime float %8.0g Imputed dropout time (weeks)
infdrop byte %14.0g droplab Dropout indicator:

0=none or noninformative;
1=informative

Sorted by: id

. notes

_dta:
1. Subset of the data from a larger (confidential) randomized clinical trial

of drug treatments for schizophrenia
2. Source:

http://www.lancaster.ac.uk/staff/diggle/APTS-data-sets/PANSS_short_data.t
> xt

3. PANSS (Positive and Negative Symptom Scale)
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Joint modeling of longitudinal and survival data

Motivation

PANSS study

Listing of a subset of the data:

. list id panss* treat if inlist(id,1,2,3,10,19,24,30,42), sepby(nobs) noobs

id panss0 panss1 panss2 panss4 panss6 panss8 treat

1 91 . . . . . Haloperidol

2 72 . . . . . Placebo

3 108 110 . . . . Haloperidol

10 97 118 . . . . Placebo
19 81 71 . . . . Risperidone

24 127 98 152 . . . Haloperidol

30 73 74 68 . . . Placebo
42 75 92 117 . . . Risperidone
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Joint modeling of longitudinal and survival data

Motivation

PANSS study

Many patients withdrew from the study before completing the
measurement schedule—of the 150 subjects, only 68
completed the study.

. misstable pattern panss*, freq bypattern

Missing-value patterns
(1 means complete)

Pattern

Frequency 1 2 3 4 5

68 1 1 1 1 1

1:

16 1 1 1 1 0
2:

24 1 1 1 0 0

3:
19 1 1 0 0 0

4:
21 1 0 0 0 0

5:
2 0 0 0 0 0

150

Variables are (1) panss1 (2) panss2 (3) panss4 (4) panss6 (5) panss8
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Joint modeling of longitudinal and survival data

Motivation

PANSS study

Over 40% of subjects specified the reason for dropout as
“inadequate for response”, which suggests that the dropout
may be informative.

. tabulate infdrop

Dropout
indicator Freq. Percent Cum.

None, noninf. 87 58.00 58.00
Informative 63 42.00 100.00

Total 150 100.00
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Joint modeling of longitudinal and survival data

Motivation

Longitudinal analysis assuming noninformative dropout

Let’s first perform standard longitudinal analysis assuming
noninformative or random dropout.

. use panss_long

(PANSS scores from a study of drug treatments for schizophrenia)

. describe

Contains data from panss_long.dta
obs: 900 PANSS scores from a study of

drug treatments for

schizophrenia
vars: 6 29 Aug 2016 12:07

size: 9,900 (_dta has notes)

storage display value

variable name type format label variable label

id int %8.0g Patient identifier
week byte %9.0g Time (weeks)

panss int %8.0g PANSS
treat byte %11.0g treatlab Treatment identifier:

1=Haloperidol, 2=Placebo,

3=Risperidone
nobs byte %8.0g Number of nonmissing

measurements, between 1 and 6
panss_mean float %9.0g Observed means over time and

treatment

Sorted by: id week

Yulia Marchenko (StataCorp) 12 / 55



Joint modeling of longitudinal and survival data

Motivation

Longitudinal analysis assuming noninformative dropout

. list id week panss treat in 1/16, sepby(id)

id week panss treat

1. 1 0 91 Haloper.
2. 1 1 . Haloper.

3. 1 2 . Haloper.
4. 1 4 . Haloper.

5. 1 6 . Haloper.
6. 1 8 . Haloper.

7. 2 0 72 Placebo
8. 2 1 . Placebo

9. 2 2 . Placebo
10. 2 4 . Placebo

11. 2 6 . Placebo
12. 2 8 . Placebo

13. 3 0 108 Haloper.
14. 3 1 110 Haloper.

15. 3 2 . Haloper.
16. 3 4 . Haloper.
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Joint modeling of longitudinal and survival data

Motivation

Longitudinal analysis assuming noninformative dropout

Consider the following random-intercept model:

panssij =βLxij + Ui + ǫij (1)

with m subjects (i = 1, 2, . . . ,m) and ni observations per
subject (j = 1, 2, . . . , ni ), where βLxij represents a saturated
model with one coefficient for each treat and week

combination.

U ′
i s ∼ i.i.d. N(0, σ2

u) are random intercepts which induce
dependence within subjects.

ǫ′ijs ∼ i.i.d. N(0, σ2
e ) are error terms.
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Joint modeling of longitudinal and survival data

Motivation

Longitudinal analysis assuming noninformative dropout

We use xtreg, mle to fit a simple random-intercept model
by using maximum likelihood (ML) with fixed effects for each
combination of treatment and time:

. xtset id
panel variable: id (balanced)

. xtreg panss i.treat##i.week, mle nolog

Random-effects ML regression Number of obs = 685

Group variable: id Number of groups = 150

Random effects u_i ~ Gaussian Obs per group:
min = 1

avg = 4.6
max = 6

LR chi2(17) = 105.58
Log likelihood = -2861.58 Prob > chi2 = 0.0000

panss Coef. Std. Err. z P>|z| [95% Conf. Interval]

treat
Placebo -2.00 4.14 -0.48 0.629 -10.11 6.11
Risper. -2.14 4.14 -0.52 0.605 -10.25 5.97
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Joint modeling of longitudinal and survival data

Motivation

Longitudinal analysis assuming noninformative dropout

week
1 -5.55 2.52 -2.21 0.027 -10.49 -0.62

2 -7.51 2.62 -2.87 0.004 -12.64 -2.38
4 -6.50 2.70 -2.40 0.016 -11.80 -1.20
6 -11.42 3.06 -3.73 0.000 -17.41 -5.43

8 -13.12 3.19 -4.12 0.000 -19.36 -6.88

treat#week
Placebo#1 7.70 3.56 2.16 0.031 0.72 14.68

Placebo#2 7.28 3.80 1.91 0.056 -0.17 14.74
Placebo#4 6.29 4.04 1.56 0.119 -1.63 14.21
Placebo#6 18.17 4.50 4.03 0.000 9.34 26.99

Placebo#8 17.63 4.96 3.56 0.000 7.92 27.35
Risper.#1 -4.91 3.55 -1.38 0.167 -11.86 2.05

Risper.#2 -6.02 3.68 -1.64 0.102 -13.24 1.19
Risper.#4 -12.42 3.85 -3.23 0.001 -19.97 -4.87
Risper.#6 -9.03 4.20 -2.15 0.032 -17.26 -0.79

Risper.#8 -2.60 4.43 -0.59 0.558 -11.29 6.09

_cons 93.40 2.92 31.93 0.000 87.67 99.13

/sigma_u 16.48 1.10 14.47 18.78
/sigma_e 12.49 0.38 11.76 13.26

rho 0.64 0.03 0.57 0.70

LR test of sigma_u=0: chibar2(01) = 353.11 Prob >= chibar2 = 0.000
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Joint modeling of longitudinal and survival data

Motivation

Mean PANSS profiles over time

All three groups demonstrate a decrease in mean PANSS
score over time, at least in the first three weeks.

. quietly margins i.week, over(treat) predict(xb)

. marginsplot

Variables that uniquely identify margins: week treat
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Joint modeling of longitudinal and survival data

Motivation

Is assumption of random dropout plausible?

Given that many subjects dropped out of the study because of
inadequate response, the observed decrease in PANSS scores
may be due to the dropout of subjects with high PANSS
scores.

We can look at the observed mean profiles over time for each
missing-value pattern, similarly to Figure 13.4 in Diggle et al.
(2002).

. keep if nobs>1

(12 observations deleted)

. by week nobs, sort: egen panss_ptrn = mean(panss)
(205 missing values generated)

. qui reshape wide panss_ptrn, i(id week) j(nobs)

. twoway line panss_ptrn* week, sort legend(order(5 "Completers")) ///

> title(Observed mean PANSS by dropout pattern) ytitle(PANSS)
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Joint modeling of longitudinal and survival data

Motivation

Is assumption of random dropout plausible?
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Observed mean PANSS by dropout pattern

There is a steep increase in the mean PANSS score
immediately prior to dropout for all dropout patterns except
completers.
This provides strong empirical evidence that dropout is related
to PANSS scores and is thus informative (nonrandom).
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Joint modeling of longitudinal and survival data

Motivation

Dropout process

We may also be interested in a dropout process itself. For
example, is there a difference between dropout rates because
of “inadequate response” among groups?

We can use standard methods of survival analysis to answer
this question.

We can treat dropout time as our analysis time and whether
the dropout is because of inadequate response as our event of
interest or failure.
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Joint modeling of longitudinal and survival data

Motivation

Dropout process

Data description:

. use panss_surv

(Dropout times for study of drug treatments for schizophrenia)

. describe

Contains data from panss_surv.dta
obs: 150 Dropout times for study of drug

treatments for schizophrenia
vars: 4 29 Aug 2016 12:07
size: 1,200 (_dta has notes)

storage display value

variable name type format label variable label

id int %8.0g Patient identifier
droptime float %8.0g Imputed dropout time (weeks)
infdrop byte %14.0g droplab Dropout indicator:

0=none or noninfiormative;
1=informative

treat byte %11.0g treatlab Treatment identifier:
1=Haloperidol, 2=Placebo,

3=Risperidone

Sorted by: id
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Joint modeling of longitudinal and survival data

Motivation

Dropout process

. list in 1/10

id droptime infdrop treat

1. 1 .704 None or noninf. Haloper.
2. 2 .74 None or noninf. Placebo

3. 3 1.121 Informative Haloper.
4. 4 1.224 Informative Haloper.

5. 5 1.303 None or noninf. Haloper.

6. 6 1.541 Informative Haloper.

7. 7 1.983 Informative Haloper.
8. 8 1.035 Informative Placebo

9. 9 1.039 None or noninf. Placebo
10. 10 1.116 Informative Placebo
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Joint modeling of longitudinal and survival data

Motivation

Cox proportional hazards model

Cox proportional hazards model:

hi (t|treat)=h0(t) exp(β
S
1 1.treati+βS

2 2.treati+βS
3 3.treati )

(2)

where t is the dropout time droptime and i = 1, 2, . . . ,m.

Baseline hazard h0(t) is left unspecified.

A constant term βS
0 is absorbed into the baseline hazard.

Coefficients βS
1 , β

S
2 , and βS

3 model subject-specific hazards as
a function of the treatment group. In general, covariates may
also depend on time t.

Subject-specific hazards are proportional.

Exponentiated coefficients are hazard ratios.
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Joint modeling of longitudinal and survival data

Motivation

Cox proportional hazards model

Declare survival-time data:

. stset droptime, failure(infdrop)

failure event: infdrop != 0 & infdrop < .

obs. time interval: (0, droptime]
exit on or before: failure

150 total observations
0 exclusions

150 observations remaining, representing
63 failures in single-record/single-failure data

863.624 total analysis time at risk and under observation
at risk from t = 0

earliest observed entry t = 0

last observed exit t = 8.002
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Joint modeling of longitudinal and survival data

Motivation

Cox proportional hazards model

Fit Cox model:

. stcox i.treat

failure _d: infdrop

analysis time _t: droptime

Iteration 0: log likelihood = -293.97982
Iteration 1: log likelihood = -288.97387

Iteration 2: log likelihood = -288.86504
Iteration 3: log likelihood = -288.86498

Refining estimates:
Iteration 0: log likelihood = -288.86498

Cox regression -- Breslow method for ties

No. of subjects = 150 Number of obs = 150
No. of failures = 63

Time at risk = 863.6239911
LR chi2(2) = 10.23

Log likelihood = -288.86498 Prob > chi2 = 0.0060

_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

treat
Placebo 1.81 0.53 2.04 0.041 1.02 3.21

Risper. 0.68 0.24 -1.12 0.262 0.34 1.34
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Joint modeling of longitudinal and survival data

Motivation

Cox proportional hazards model

Redisplay results as coefficient estimates (for later
comparison):

. stcox, nohr

Cox regression -- Breslow method for ties

No. of subjects = 150 Number of obs = 150

No. of failures = 63
Time at risk = 863.6239911

LR chi2(2) = 10.23
Log likelihood = -288.86498 Prob > chi2 = 0.0060

_t Coef. Std. Err. z P>|z| [95% Conf. Interval]

treat

Haloper. 0.00 (empty)
Placebo 0.59 0.29 2.04 0.041 0.02 1.16

Risper. -0.39 0.35 -1.12 0.262 -1.07 0.29
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Joint modeling of longitudinal and survival data

Motivation

Survivor functions by treatment groups

Plot survivor functions in three treatment groups:

. stcurve, survival at1(treat=1) at2(treat=2) at3(treat=3)

.4
.6

.8
1

S
ur

vi
va

l

0 2 4 6 8
Time to dropout (weeks)

Haloperidol (treat=1) Placebo (treat=2)
Risperidone (treat=3)

Cox proportional hazards regression

The placebo group has the highest dropout rate due to
inadequate response whereas the risperidone group has the
lowest dropout rate.
But dropout rates also depend on PANSS scores.
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Joint modeling of longitudinal and survival data

Joint analysis

Revisiting PANSS study

Whether we are interested:

In the longitudinal analysis of PANSS trajectory over time in
different groups,
In the survival analysis comparing dropout rates among the
groups, or
In both types of analysis,

we cannot perform them separately, given that the two
outcomes may be correlated.

We should consider joint analysis of these data.
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Joint modeling of longitudinal and survival data

Joint analysis

Goals

Joint analysis should be able to incorporate the specific
features of longitudinal and survival data.

Joint analysis should be equivalent to the corresponding
separate analysis in the absence of an association between the
longitudinal and survival outcomes.

Tsiatis et al. (1995), Wulfsohn and Tsiatis (1997), and
Henderson et al. (2000) considered a joint model that links
the longitudinal and survival outcomes through a shared
latent process.
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Joint modeling of longitudinal and survival data

Joint analysis

PANSS analysis accounting for informative dropout

Let’s fit a model that accounts for informative dropout.

Consider the following joint random-intercept Cox model
based on separate models (1) and (2):

panssij =βLxij + Ui + ǫij

hi(t)=h0(t) exp(β
Si.treati + γUi) (3)

Random intercepts U ′
i s are now shared between the two

models and induce dependence between the longitudinal
outcome panss and survival outcome droptime.

More generally, I will refer to model (3) as a joint
random-intercept Cox model, in which survival outcome is
modeled semiparametrically using the Cox model.
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Joint modeling of longitudinal and survival data

New Stata commands for joint analysis

You can use forthcoming, user-written suite jm to perform
joint analysis of longitudinal and survival data.

Command jmxtstset declares your longitudinal and survival
data.

Command jmxtstcox fits joint random-intercept Cox models,
similar to model (3).

Command jmxtstcurve plots survivor, hazard, and
cumulative hazard functions after jmxtstcox.

Other Stata postestimation features such as predict, test,
nlcom, margins, etc. are also available.
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Joint modeling of longitudinal and survival data

New Stata commands for joint analysis

Data declaration—jmxtstset

To fit joint models using jmxtstcox, you must first declare
your longitudinal and survival data using jmxtstset.

Longitudinal and survival data are typically saved in different
files. To perform estimation, all data should be in one file
with longitudinal data saved in a long format (with multiple
observations per subject saved in rows).

jmxtstset provides a syntax that combines the two datasets
and performs declaration, and provides a syntax that declares
an already combined dataset.
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Joint modeling of longitudinal and survival data

New Stata commands for joint analysis

Data declaration—jmxtstset

jmxtstset combines the syntaxes of stset and xtset.
Syntax for the combined dataset:

. jmxtstset idvar timevar, xt(is xt)|st(is st) failure(failvar)
[

stsetopts
]

is xt and is st are binary variables identifying longitudinal and
survival observations, respectively; only one of them must be
specified in the respective option.

Syntax for separate datasets with survival dataset in memory:

. use survfile

. jmxtstset idvar timevar using longfile, st failure(failvar)
[

stsetopts
]

Syntax for separate datasets with longitudinal dataset in
memory:

. use longfile

. jmxtstset idvar timevar using survfile, xt failure(failvar)
[

stsetopts
]
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Joint modeling of longitudinal and survival data

New Stata commands for joint analysis

Estimation

Command jmxtstcox performs estimation.

It fits a random-intercept Cox model to the survival and
longitudinal outcomes.

jmxtstcox uses nonparametric ML to estimate model
parameters. The estimation method is an
expectation-maximization algorithm. The standard errors are
obtained using the observed information matrix (Louis 1982).
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Joint modeling of longitudinal and survival data

New Stata commands for joint analysis

Comparison with other Stata commands for joint analysis

Command gsem (help gsem) can be used to fit joint models
with flexible specification of latent processes, but in which
survival outcome is modeled parametrically.

User-written command stjm (Crowther et al. 2013) can be
used to fit joint random-intercept and random-coefficient
models. The survival outcome is again modeled
parametrically, but flexible parametric survival models
(Royston and Lambert 2011) are also supported.

User-written command jmxtstcox currently supports only
joint random-intercept models, but it allows to model the
survival outcome semiparametrically, without any parametric
assumptions for the baseline hazard.

Yulia Marchenko (StataCorp) 35 / 55



Joint modeling of longitudinal and survival data

Joint analysis of the PANSS data

Data declaration

Let’s now analyze PANSS scores and dropout times jointly by
fiting the random-intercept Cox model (3).

The longitudinal data are saved in panss long.dta and the
survival data are saved in panss surv.dta.

We first use jmxtstset to combine survival and longitudinal
datasets and to declare the combined data:

. use panss_surv

(Dropout times for study of drug treatments for schizophrenia)

. jmxtstset id droptime using panss_long, st failure(infdrop)

-----------------------------------LONGITUDINAL-------------------------------

id: id
filename: panss_long.dta

900 total observations

0 exclusions

900 observations remaining
150 subjects
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Joint modeling of longitudinal and survival data

Joint analysis of the PANSS data

Data declaration

-------------------------------------SURVIVAL---------------------------------

id: id

failure event: infdrop != 0 & infdrop < .
obs. time interval: (droptime[_n-1], droptime]

exit on or before: failure

150 total observations

0 exclusions

150 observations remaining, representing

150 subjects
63 failures in single-failure-per-subject data

863.624 total analysis time at risk and under observation
at risk from t = 0

earliest observed entry t = 0

last observed exit t = 8.002
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Joint modeling of longitudinal and survival data

Joint analysis of the PANSS data

Estimation

We now use jmxtstcox to fit the joint model:

. jmxtstcox (_xt: panss i.treat##i.week) (_st: i.treat), nolog

longitudinal depvar: panss

failure _d: infdrop
analysis time _t: droptime

Joint model of longitudinal and survival data
Breslow method for ties

Subject id: id Total subjects = 150

Longitudinal (_xt): Survival (_st):

No. of subjects = 150 No. of subjects = 150
No. of obs = 685 No. of obs = 150

No. of failures = 63

Time at risk = 863.62

Wald chi2(19) = 112.90
Observed log likelihood = -3194.739326 Prob > chi2 = 0.0000
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Joint modeling of longitudinal and survival data

Joint analysis of the PANSS data

Estimation

Coef. Std. Err. z P>|z| [95% Conf. Interval]

panss
treat

Placebo -2.00 4.16 -0.48 0.631 -10.16 6.16

Risper. -2.14 4.16 -0.51 0.607 -10.30 6.02

week
1 -5.55 2.51 -2.21 0.027 -10.48 -0.63

2 -7.24 2.61 -2.77 0.006 -12.36 -2.13
4 -6.12 2.70 -2.27 0.023 -11.40 -0.83
6 -10.61 3.05 -3.48 0.001 -16.59 -4.63

8 -12.20 3.18 -3.84 0.000 -18.43 -5.97

treat#week
Placebo#1 7.69 3.55 2.17 0.030 0.73 14.66
Placebo#2 7.65 3.79 2.02 0.044 0.22 15.09

Placebo#4 7.03 4.03 1.75 0.081 -0.86 14.93
Placebo#6 18.74 4.49 4.18 0.000 9.95 27.54

Placebo#8 18.43 4.94 3.73 0.000 8.75 28.11
Risper.#1 -4.91 3.54 -1.39 0.166 -11.84 2.03

Risper.#2 -6.08 3.67 -1.65 0.098 -13.28 1.13
Risper.#4 -12.30 3.84 -3.20 0.001 -19.83 -4.77
Risper.#6 -9.12 4.19 -2.18 0.029 -17.33 -0.91

Risper.#8 -2.82 4.42 -0.64 0.524 -11.48 5.85

_cons 93.40 2.93 31.85 0.000 87.65 99.15

Yulia Marchenko (StataCorp) 39 / 55



Joint modeling of longitudinal and survival data

Joint analysis of the PANSS data

Estimation

_t
treat

Placebo 0.77 0.34 2.23 0.026 0.09 1.44
Risper. -0.49 0.39 -1.26 0.207 -1.26 0.27

/gamma 0.05 0.01 0.04 0.07

/sigma2_u 281.22 37.30 208.11 354.34

/sigma2_e 155.29 9.47 136.73 173.85

LR test of gamma = 0: chi2(1) = 37.41 Prob >= chi2 = 0.0000

The association parameter γ has an estimate of 0.05 with a
95% CI of (0.04, 0.07), which implies a positive association
between PANSS scores and dropout times—the higher the
PANSS score, the higher the chance of dropout.

The LR test of no latent association (H0: γ = 0) with
χ2
1 = 37.41 provides strong evidence against a random-dropout

model.
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Joint modeling of longitudinal and survival data

Comparison of results with analysis ignoring dropout

Longitudinal outcome

The estimated random-intercept variance is slightly larger
under the joint, informative dropout model.

Variable inform noninf

sigma2_u

_cons 281.22 271.75
37.30 36.19

0.00 0.00

sigma2_e

_cons 155.29 155.95
9.47 9.55

0.00 0.00

legend: b/se/p
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Joint modeling of longitudinal and survival data

Comparison of results with analysis ignoring dropout

Mean PANSS profiles over time for each group

As with xtreg, we can compute and plot estimated mean
PANSS profiles after jmxtstcox.

. qui margins i.week, over(treat) predict(xb xt)

. marginsplot

Variables that uniquely identify margins: week treat
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Joint modeling of longitudinal and survival data

Comparison of results with analysis ignoring dropout

Mean PANSS profiles over time for each group

We can overlay the estimated mean profiles with the observed
mean profiles.
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Time (weeks)

Haloperidol Placebo
Risperidone Observed means

Estimated means from joint model with 95% CIs

The estimated mean profiles from the joint model are higher
than the observed mean profiles because the former represent
“dropout-free” profiles—subjects with high PANSS scores
tend to drop out, which leads to lower observed mean values.
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Joint modeling of longitudinal and survival data

Comparison of results with analysis ignoring dropout

Survival outcome

We can compare estimates from joint and separate Cox
models:

Variable joint stcox

treat

Haloper. (base) (base)

Placebo 0.77 0.59
0.34 0.29

0.03 0.04
Risper. -0.49 -0.39

0.39 0.35
0.21 0.26

legend: b/se/p
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Joint modeling of longitudinal and survival data

Comparison of results with analysis ignoring dropout

Survivor functions of times to dropout

We can plot marginal survivor functions of times to dropout in
each group.

. jmxtstcurve, survival at1(treat=1) at2(treat=2) at3(treat=3)
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Joint model of longitudinal and survival data

As with separate analysis, the placebo group has the highest
“informative” dropout rate whereas the risperidone group has
the lowest dropout rate.
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Joint modeling of longitudinal and survival data

Comparison of results with analysis ignoring dropout

Survivor functions of times to dropout

In fact, survival estimates from joint and separate analyses are
similar:
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Joint analysis versus separate analysis
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Joint modeling of longitudinal and survival data

Models with more flexible latent associations

Random-intercept model (3) can be extended to allow for
more flexible latent associations motivated by practice; see
Henderson (2000) for details.
For example, a joint random-coefficient Cox model
additionally includes a random slope on time in the
longitudinal model and an association through the random
slope in the survival model.

panssij = βLxij + U1i + week× U2i + ǫij

hi (t) = h0(t) exp(β
Si.treati + γ1U1i + γ2U2i ) (4)

A joint random-trajectory Cox model extends the
random-coefficient model (4) to include an entire stochastic
longitudinal trajectory.

panssij = βLxij + U1i + week× U2i + ǫij

hi(t) = h0(t) exp(β
Si.treati + γ1U1i + γ2U2i + γ3Wi(t))

Wi(t) = U1i + t × U2i (5)
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Joint modeling of longitudinal and survival data

Models with more flexible latent associations

Semiparametric Cox submodels in (3), (4), and (5) can be
replaced with a parametric survival model, if appropriate.

For example, with an exponential model:

hi (t) = t exp(βSi.treati + γUi) (3a)

Or, with a Weibull model:

hi(t) = ptp−1 exp(βSi.treati + γUi) (3b)

Such parametric models can be fit using, for example, gsem,
but software for the corresponding semiparametric models is
not available yet.
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Joint modeling of longitudinal and survival data

Models with more flexible latent associations

For example, a joint random-intercept model using gsem:

. gsem (panss <- i.treat##i.week U[id]@1)
> (droptime <- i.treat U[id]@gamma, family(weibull, failure(infdrop)))

A joint random-coefficient model:

. gsem (panss <- i.treat##i.week U1[id]@1 c.week#U2[id]@1)
> (droptime <- i.treat U1[id]@gamma1 U2[id]@gamma2,
> family(weibull, failure(infdrop))),
> covstructure(U1[id] U2[id], unstructured)
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Joint modeling of longitudinal and survival data

Summary

Summary

Joint analysis of longitudinal and survival outcomes is
necessary to obtain unbiased inference when the two
outcomes are correlated.
Joint analysis can be used, for example, 1) to evaluate effects
of baseline covariates on longitudinal and survival outcomes,
2) to evaluate effects of time-dependent covariates on survival
outcome; and 3) to account for informative dropout in
longitudinal analysis.
You can use user-written command jmxtstcox to fit a joint
random-intercept Cox model.
You can use gsem to fit joint models that can accommodate
more flexible specifications of a latent process and
noncontinuous longitudinal outcomes. The survival outcome,
however, is modeled parametrically.
Also see user-written command stjm for fitting flexible
parametric joint models of longitudinal and survival data.
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Joint modeling of longitudinal and survival data

Future work

Future work

Support of semiparametric Cox models with more flexible
latent associations such as a random-coefficient model (4)
and a random-trajectory model (5).

Support of noncontinuous longitudinal outcomes including
binary and count outcomes.

Support of nonproportional hazards via transformation
survival models (Zeng and Lin 2007).

More postestiomation features such as dynamic predictions
and model diagnostics for joint analysis of longitudinal and
survival data.
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