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Motivation 

-- Focus here is on two-stage optimization estimators (2SOE) 

-- Asymptotic theory for 2SOE (correct standard errors) available for many years 

 -- Both stages are maximum likelihood estimators (MLE)  
 
 Murphy, K.M., and Topel, R.H. (1985):  "Estimation and Inference in Two-  

  Step Econometric Models," Journal of Business and Economic    
  Statistics, 3, 370-379. 

 
 -- More general cases 
 
 Newey, W.K. and McFadden, D. (1994):  Large Sample Estimation and   

  Hypothesis Testing, Handbook of Econometrics, Engle, R.F., and   
  McFadden, D.L., Amsterdam:  Elsevier Science B.V., 2111-2245,   
  Chapter 36. 

 
 White, H. (1994): Estimation, Inference and Specification Analysis, New   

  York: Cambridge University Press. 
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Motivation (cont’d) 

-- Textbook treatments of the subject 

 Cameron, A.C. and Trivedi, P.K. (2005):  Microeconometrics:  Methods and  
  Applications,” New York:  Cambridge University Press. 

 
 Greene (2008):  Econometric Analysis, 6th Edition, Upper Saddle River, NJ:   

  Pearson, Prentice-Hall. 
 
 Wooldridge, J.M. (2010): Econometric Analysis of Cross Section and Panel  

  Data, 2nd Ed. Cambridge. 
  
-- Nonetheless, applied researchers often implement bootstrapping methods or 

ignore the two-stage nature of the estimator and report the uncorrected outputs 

from packaged statistical software.  
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Motivation (cont’d) 

--  With a view toward easy software implementation (in Stata), we offer the 

practitioner a simplification of the textbook asymptotic covariance matrix 

formulations (and their estimators – standard errors) for the most commonly 

encountered versions of the 2SOE -- those involving MLE or the nonlinear least 

squares (NLS) method in either stage. 

--  We cast the discussion in the context of regression models involving endogeneity – 

a sampling problem whose solution often requires a 2SOE. 
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Motivation (cont’d) 

-- Examples of relevant methodological contexts involving endogeneity:  

1) The two-stage residual inclusion (2SRI) estimator suggested by Terza et al.   

 (2008) for nonlinear models with endogenous regressors 

Terza, J., Basu, A. and Rathouz, P. (2008):  “Two-Stage Residual Inclusion Estimation:  Addressing Endogeneity 
in Health Econometric Modeling,” Journal of Health Economics, 27, 531-543. 

 
2) The two-stage sample selection estimator (2SSS) developed by Terza (2009)   

 for nonlinear models with endogenous sample selection 

Terza, J.V. (2009): “Parametric Nonlinear Regression with Endogenous Switching,” Econometric Reviews, 28, 555-
580. 

 
3) Causal incremental and marginal effects estimators proposed by Terza (2014).   

Terza, J.V. (2014):  "Health Policy Analysis from a Potential Outcomes Perspective: Smoking During Pregnancy 
and Birth Weight,” Unpublished manuscript, Department of Economics, Indiana University Purdue 
University Indianapolis. 
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 Motivation (cont’d) 

 
-- In this presentation we will discuss (1) and (3) – 2SRI and Causal Effects 

-- We will detail the analytics and Stata code for our simplified standard error 

 formulae for both of these and give illustrative examples. 
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2SOE and Their Asymptotic Standard Errors 

-- The parameter vector of interest is partitioned as ω [δ γ ]    and estimated in 

 two-stages:  

 -- First, an estimate of δ is obtained as the optimizer of an appropriately   

  specified first-stage objective function 

   
n

1 1i
i 1

q (δ,V )

              (1) 

 where 1iV  denotes the relevant subvector of the observable data for the ith  

 sample individual (i = 1, ..., n).  
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2SOE and Their Asymptotic Standard Errors (cont’d) 

 -- Next, an estimate of γ is obtained as the optimizer of 
 

  
n

2i
i 1

ˆq(δ, γ, V )

              (2) 

 
 where 2iV  denotes the relevant subvector of the observable data for the ith  

 sample individual, and δ̂  denotes the first-stage estimate of δ. 

 
--  Under fairly general conditions it can be shown that: 
 

  
1 1 d
2 2 ˆD n D n ω ω N(0,I)

γγ̂

ˆ δδ     
           

 

 
i.e., ˆˆ ˆω = [δ γ] is asymptotically normal with asymptotic covariance matrix D.  
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2SOE and Their Asymptotic Standard Errors:  Some Notation  

-- Rewriting the asymptotic covariance matrix of ˆˆ ˆω = [δ γ] in partitioned form we 
get  

 11 12

12 22

D D
D

D D
 

   
              (3) 

 
where  
 11

ˆAVAD R *(δ)  denotes the asymptotic covariance matrix of δ̂   

 22 ˆAVAD R(γ)  

 12D  is left unspecified for the moment. 

 δ̂  and γ̂  are the first and second stage estimators, respectively 
 
and the “*” denotes the matrix two which the relevant “packaged” asymptotic 
covariance matrix estimator converges (by “packaged” we mean that which would 
be obtained from Stata ignoring the two-stage nature of the estimator.) 
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 2SOE and Their Asymptotic Standard Errors (cont’d) 

-- It is incorrect to ignore the two-stage nature of the estimator and use the 

“packaged” standard errors from the second-stage [i.e., the packaged estimator of 

22D  in (3) with 12D  set equal to 0].  

-- The problem is that the expressions for the correct asymptotic covariance matrix 

of the generic 2SOE found in textbooks [Cameron and Trivedi (2005), Greene 

(2012), and Wooldridge (2010)] are daunting. 

-- As a result, applied researchers opt for approximation methods like 

bootstrapping, or ignore the need for correction and report “packaged” results. 

-- In the following, we offer a substantial simplification of the correct form of D (and 

its relevant partitions) that we hope will be useful to  practitioners. 
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2SOE and Their Asymptotic Standard Errors:  More Notation 

-- 1q  is shorthand notation for 1 1q (δ,V )as defined in (1)  

-- q is shorthand notation for 2q(δ, γ, V )as defined in (2)  

-- sq  denotes the gradient of q with respect to parameter subvector s.  This is a 

 row vector whose typical element is jq / s  ; the partial derivative of q with 

 respect to the jth element of s 

-- stq  denotes the Jacobian of sq  with respect to t.  This is a matrix whose typical 
 element is 2

j mq / s t   ; the cross partial derivative of q with respect to the jth 
 element of s and the mth element of t – the row dimension of stq  corresponds 
 to that of its first subscript and the column dimension to that of its second 
 subscript. 
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2SOE:  An Example 

-- For example, suppose the vector of observable data for the ith sample individual 

is p oZ [Y X X W ]  where 

 Y ≡ the outcome of policy interest 

 pX  ≡ the policy variable of interest 

 oX  ≡ a vector of observable confounders (control variables) 

 W  ≡ a vector of identifying instrumental variables. 

 
-- Suppose our objective is to estimate the regression (broadly defined) of Y on 

p o[X X ] purged of bias due to the potential endogeneity of pX . 
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2SOE:  An Example (cont’d) 

--  A 2SOE of the following form might be appropriate: 

First Stage: Consistently estimate δ via the nonlinear least squares (NLS) method.  

For example, we might use 

 2
1 1i pi iq (δ,V ) (X r(Wδ))    

where 1 p oV [X X W ] , oW [X W ]  and r(   ) is a known function.  

Second Stage:  Consistently estimate γ via a maximum likelihood estimator (MLE).  

For example, we might use 

    2i i pi i
ˆ ˆq(δ, γ, V ) ln f (Y |X ,W ;δ, γ)  

 
with 2V Z  and pf (Y | X ,W; δ, γ)  being the relevant conditional density of Y. 
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2SOE and Their Asymptotic Standard Errors (cont’d) 

--  The devil is, of course, in the “D”-tails (seek simple estimators of 12D  and 22D ) 

--  The typical textbook rendition of the “D”-tails is something like the following  

 12 δδ 1 γ δ 1 γγ γδ γγ
1 11 ˆE E ED q q q q AVAR *(δ)E q qE

                       

 22 γγ γ γδ
1

δ
ˆˆAVAR(γ) E E AVAR(δ)E 'D q q q


               

   γ δ 1 δδ δ
1

γE E Eq q 'q q            

   γδ δδ γ δ 1 γγ
11q q q q ˆE E E ' E AVAR *(q γ)

                  

 
where ˆAVAR *(δ)  is the “packaged” and legitimate asymptotic covariance matrix 
of δ̂ , and ˆAVAR *(γ) is “packaged” but incorrect covariance matrix of γ̂ . 
 
--  No need to define any of the components of this mess at this point.  Just wanted to 

 make a point. 
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 Simple Standard Error Formulae – MLE 
  

-- When the second stage estimator is MLE the correct (and practical) formulations 

of the estimators of 12D  and 22D  simplify as  

 
 *

12 γ δ
ˆD δ q qAVAR *( )E* AVAR *(γ)        

 

 
  *

22 γ δ γ δAVAR *(γ)E* AVAR *(ˆD q q δ q q)E* 'AVAR *(γ)         
     

 
               AVAR *(γ)   
where 

 
n

γ δ γ 2i δ 2i
i 1

ˆ ˆq q q(δ,γ,V )' q(δ,γ,E* V )


     
    

 
and AVAR *(δ̂) and AVAR *(γ) are the estimated covariance matrices obtained 

from the first and second stage packaged regression outputs, respectively. 
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Simple Standard Error Formulae – NLS  

-- When the second stage estimator is NLS such that 
 
 2

2i i 3iq(δ, γ, V ) (Y μ(δ, γ, V ))      
 
where Y is a scalar element of 2V  and 3V   is a subvector of 2V  (not including Y), the 

correct formulations of the estimators of 12D  and 22D  simplify as 

 
*

12 γδ
1

γγD̂ qˆ ˆ ˆAVAR *(δ)E* qE*
           

 
 *

22 γγ γδ γδ γ
1

γ
1ˆˆ ˆ ˆ ˆ ˆE*ˆ E* AVAR *(δ)E*D q q q q' E AVAR *(γ)

 
                   

                (4) 
where 

 
n

γδ γ 3i δ 3i
i 1

ˆ ˆˆ ˆq μ(δ, γ, V ) μ(δ, γ, V )Ê*


       

 
n

γγ γ 3i γ 3i
i 1

ˆ ˆˆ ˆq μ(δ, γ, V ) μ(δ, γ, V )Ê*


      . 
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Simple Standard Error Formulae – NLS (cont’d) 
  

-- So, for example, the “t-statistic” k k
*
22(k)ˆ(γ γ ) / D̂  for the kth element of γ is 

asymptotically standard normally distributed and can be used to test the hypothesis 

that 0
k kγ γ  for 0

kγ , a given null value of kγ , where *
22(k)D̂  denotes the kth diagonal 

element of  *
22D̂ . 
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Example:  Two-Stage Residual Inclusion (2SRI) 

-- Suppose the researcher is interested in estimating the effect that a policy variable 

of interest pX  has on a specified outcome Y.   

-- Moreover, suppose that the data on pX  is sampled endogenously – i.e. it is 

correlated with an unobservable variable uX  that is also correlated with Y (an 

unobservable confounder).   
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Example:  2SRI (cont’d) 

-- To formalize this, we follow Terza et al. (2008), and assume that 

 p o u p o uE[Y | X , X , X ] μ(X , X , X ;β)     and    p uX  r(W, α) + X  
                [outcome regression]      [auxiliary regression] 
 
 oX  denotes a vector of observable confounders (variables that are possibly   

  correlated with both Y and pX )  

 uX  is a scalar comprising the unobservable confounders  

 β and α are parameters vectors 

 oW = [X W ]  

 W  is an identifying instrumental variable, and  

 μ(   ) and r(    ) are known functions.   
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Example:  2SRI (cont’d) 

-- The true causal regression model in this case is 

  p o uY μ(X , X , X ;β) e    

where e is the random error term, tautologically defined as 

 p o ue Y μ(X , X , X ;β)  . 

   
-- The β parameters are not directly estimable (e.g. by NLS) due to the presence of 

the unobservable confounder uX .   
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Example:  2SRI (cont’d) 

The following 2SOE is, however, feasible and consistent.   

First Stage:  Obtain a consistent estimate of α by applying NLS to the auxiliary 

regression and compute the residuals as 

 u p
ˆ ˆX = X  r(W, α)  

where α̂  is the first-stage estimate of α. 

 
Second Stage:  Estimate β by applying NLS to 

 Y = p o uμ(X ,X , X̂ ;β) + e2SRI 

where e2SRI denotes the regression error term. 
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Example:  2SRI (cont’d) 

-- In order to detail the asymptotic covariance matrix of this 2SRI estimator, we cast 

 it in the framework of the generic 2SOE discussed above with α and β playing 

 the roles of δ and γ, respectively.   

-- This version of the 2SRI estimator implements NLS in its first and second stages 

so the relevant versions of 1 1q (δ,V ) and 2
ˆq(δ, γ, V ) are 

 2
p1 1 Xq (  α,V ) r( )( W, α)      

 
and   

  2
2

p o u
ˆY μ(X ,ˆq(α, X ,β, V β) X ; )   

  
where p1V [X W]  and p2V Y[ X W] . 
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Smoking and Birthweight:  Parameter Estimation via 2SRI 

-- Re-estimate model of Mullahy (1997) using 2SRI 
 
Mullahy, J. (1997):  "Instrumental-Variable Estimation of Count Data Models: 

Applications to Models of Cigarette Smoking Behavior," Review of 
Economics and Statistics, 79, 586-593. 

 
 Y = infant birthweight in lbs 
 pX = number of cigarettes smoked per day during pregnancy 
  
Outcome Regression 
  p o u p o u p p o o u uE[Y | X , X , X ] μ(X , X , X ;β) exp(X β X β X β )     
 
Auxiliary Regression 
 p uX  exp(Wα) + X      u pX X  exp(Wα)   
  
 2

1 1i p iiq (α,V exp(W(X ))) α    

 pi
2

p o o pi ii u2i exp(X β X β (Xq(α, β  e, V ) xp(Wα))β( ))Y       
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Smoking and Birthweight:  Parameter Estimation via 2SRI (cont’d) 

  oX = [1   PARITY  WHITE  MALE] 
  oW = [X W ]  
 
  W  = [EDFATHER   EDMOTHER   FAMINCOM   CIGTAX88] 
   
  PARITY = birth order 
   
  WHITE = 1 if white, 0 otherwise 
 
  MALE = 1 if male, if female 
 
  EDFATHER = paternal schooling – yrs. 
 
  EDMOTHER = maternal schooling – yrs. 
 
  FAMINCOM = family income (× 10-3) 
 
  CIGTAX99 = per pack state excise tax on cigarettes.   
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Smoking and Birthweight:  Parameter Estimation via 2SRI (cont’d) 
 

--  Obtain the parameter estimates in both stages using the Stata “glm” command 

with “link(log)”, “family(gaussian)” and “vce(robust)” options. 

--  Using results for the case in which the 2nd stage of the 2SOE is NLS 
 

 
*

11 ˆAVAR *ˆ ( )D α  
 

 *
12 βα

1
ββD̂ qˆ ˆˆAVAR *(α)E* qE*

           
 
and 
 

 *
22 ββ βα βα

1
β

1
β

ˆˆ ˆ ˆ ˆˆE* E* AVAR *(α) E* ' ED̂ q q q * AVAR *(β)q
 

                     
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Smoking and Birthweight:  Parameter Estimation via 2SRI (cont’d) 
 
where 
 

 2
u i i i i

n
βα

i 1

ˆ ˆˆ ˆE* β exp(X β) exp(W X Wq α)


       

 

 2
i i i

n
ββ

i 1

ˆÊ* exp(X β) X Xq


      

 

i pi oi ui
ˆX [X X X ] , and  ˆAVAR *(α) and  ˆAVAR *(β) are the estimated covariance 

matrices obtained from first and second stage GLM estimation, respectively. 
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2SRI Estimation -- Notes on Stata Implementation 
 
-- Use MATA for calculation of the estimated asymptotic covariance matrix. 
 
-- Use the st_matrix MATA command immediately after first and second stage 

GLM estimations to save  ˆAVAR *(α) and  ˆAVAR *(β) as MATA matrices, e.g. 
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2SRI Estimation -- Notes on Stata Implementation:  1st Stage GLM 
 
Stata Code 
 
/************************************************* 
** 2SRI Estimation begins here.    ** 
*************************************************/ 
/************************************************* 
** First-stage NLS estimation of the auxiliary ** 
** exponential regression (via GLM).     ** 
** Conduct Wald test of joint significance of ** 
** the instruments.       ** 
** Save xuhat and the predicted values from the ** 
** regression        **  
*************************************************/ 
glm CIGSPREG PARITY WHITE MALE EDFATHER EDMOTHER FAMINCOM CIGTAX88, /// 
family(gaussian) link(log) vce(robust) 
test (EDFATHER = 0) (EDMOTHER = 0) (FAMINCOM = 0) (CIGTAX88 = 0) 
predict xuhat, response 
predict expwalpha, mu 
 
/************************************************* 
** Load the coefficient vector and covariance ** 
** matrix from first-stage GLM into MATA  **  
** matrices.         ** 
*************************************************/ 
mata: alpha=st_matrix("e(b)")' 
mata: v1=st_matrix("e(V)") 
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2SRI Estimation -- Notes on Stata Implementation:  1st Stage GLM (cont’d) 
 

Stata Output 
 
------------------------------------------------------------------------------ 
             |               Robust 
    CIGSPREG |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
      PARITY |   .0413746   .0740355     0.56   0.576    -.1037323    .1864815 
       WHITE |   .2788441    .244504     1.14   0.254     -.200375    .7580632 
        MALE |   .1544697   .1801299     0.86   0.391    -.1985785    .5075179 
    EDFATHER |  -.0341149   .0184968    -1.84   0.065     -.070368    .0021381 
    EDMOTHER |  -.0991817   .0296607    -3.34   0.001    -.1573155   -.0410479 
    FAMINCOM |  -.0183652   .0069294    -2.65   0.008    -.0319465   -.0047839 
    CIGTAX88 |   .0190194   .0132204     1.44   0.150    -.0068922    .0449309 
       _cons |   2.043192   .3649598     5.60   0.000     1.327884      2.7585 
------------------------------------------------------------------------------ 
 
. test (EDFATHER = 0) (EDMOTHER = 0) (FAMINCOM = 0) (CIGTAX88 = 0) 
 
 ( 1)  [CIGSPREG]EDFATHER = 0 
 ( 2)  [CIGSPREG]EDMOTHER = 0 
 ( 3)  [CIGSPREG]FAMINCOM = 0 
 ( 4)  [CIGSPREG]CIGTAX88 = 0 
 
           chi2(  4) =   49.33 
       Prob > chi2 =    0.0000 
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2SRI Estimation -- Notes on Stata Implementation:  2nd Stage GLM 
 
Stata Code 
 
/************************************************* 
** Apply GLM for the 2SRI second stage.   ** 
*************************************************/ 
glm BIRTHWTLB CIGSPREG PARITY WHITE MALE xuhat, /// 
family(gaussian) link(log) vce(robust) 
 

Stata Output 
------------------------------------------------------------------------------ 
             |               Robust 
   BIRTHWTLB |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
    CIGSPREG |  -.0140086   .0034369    -4.08   0.000    -.0207447   -.0072724 
      PARITY |   .0166603   .0048853     3.41   0.001     .0070854    .0262353 
       WHITE |   .0536269   .0117985     4.55   0.000     .0305023    .0767516 
        MALE |   .0297938   .0088815     3.35   0.001     .0123864    .0472011 
       xuhat |   .0097786   .0034545     2.83   0.005      .003008    .0165492 
       _cons |   1.948207   .0157445   123.74   0.000     1.917348    1.979066 
------------------------------------------------------------------------------



31 
 

2SRI Asymptotic Standard Errors -- Notes on Stata Implementation 
 

-- MATA code for calculating the estimated asymptotic covariance matrix 
 

 

* *
11 12
* *
12 22

ˆ ˆD D
D̂*

ˆ ˆD D

 
 

  
 

where 
 

 
*

11 ˆAVAR *ˆ ( )D α  

 *
12 βα

1
ββD̂ qˆ ˆˆAVAR *(α)E* qE*

           
and 

 
*

22 ββ β βα
1

ββ
1

α
ˆ ˆ ˆ ˆˆE* E* AVAR *(D̂ q q q qα) E* ' E*

 
                   

                ˆAVAR *(β)  
2

u i i i i
n

βα
i 1

ˆ ˆˆ ˆE* β exp(X β) exp(W X Wq α)


       

2
i i i

n
ββ

i 1

ˆÊ* exp(X β) X Xq


      
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2SRI Asymptotic Standard Errors -- Notes on Stata Implementation (cont’d) 
 

/************************************************* 
** Use the Stata "putmata" command to send    
** Stata data variables into Mata vectors.   
*************************************************/ 
putmata CIGSPREG BIRTHWTLB PARITY WHITE MALE EDFATHER /// 
 EDMOTHER FAMINCOM CIGTAX88 xuhat expwalpha 
. 
. 
. 
/************************************************* 
** MATA Start-up.                               ** 
*************************************************/ 
mata: 
. 
. 
. 
 
/************************************************* 
** Load the coefficient vector and covariance ** 
** matrix from second-stage GLM into MATA   ** 
** matrices.         ** 
*************************************************/ 
beta=st_matrix("e(b)")' 
v2=st_matrix("e(V)") 
. 
. 
. 
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2SRI Asymptotic Standard Errors -- Notes on Stata Implementation (cont’d) 
 

/************************************************* 
** Load the coefficient vector and covariance ** 
** matrix from second-stage GLM into MATA   ** 
** matrices.         ** 
*************************************************/ 
beta=st_matrix("e(b)")' 
v2=st_matrix("e(V)") 
. 
. 
. 
/************************************************* 
** Load the W-variables for the rhs of the      ** 
** first stage GLM equation into a MATA matrix ** 
** -- don't include the policy variable or xuhat** 
** -- do include the IVs.      ** 
** -- do include a constant term    ** 
*************************************************/ 
W=PARITY, WHITE, MALE, EDFATHER, EDMOTHER, FAMINCOM, /// 
 CIGTAX88, J(rows(PARITY),1,1) 
 
/************************************************* 
** Load the X-variables for the rhs of the      ** 
** second stage GLM equation into a MATA matrix ** 
** -- don't include the policy variable or the **  
** IVs.           ** 
*************************************************/ 
X=PARITY, WHITE, MALE, xuhat 
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2SRI Asymptotic Standard Errors -- Notes on Stata Implementation (cont’d) 
 
/************************************************* 
** Generate 2 matrices: 
** X0 does not include the policy variable xp 
** X1 does include the policy variable xp 
** Appending a constant term to the end of each 
** matrix. 
*************************************************/ 
X0=X,J(rows(X),1,1) 
X1=xp,X,J(rows(X),1,1) 
 
/************************************************* 
** Compute x1b1 multiplying the matrix   ** 
** of exogenous variables (X1) by the     ** 
** coefficient vectors.       ** 
*************************************************/ 
x1b1=X1*beta 
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2SRI Asymptotic Standard Errors -- Notes on Stata Implementation (cont’d) 
 
/************************************************* 
** Compute the asymptotic covariance matrix of 
** the 2SRI estimates (See Appendix A).  
*************************************************/ 
paMu=-bxu*exp(x1b1):*expwalpha:*W 
pbMu=exp(x1b1):*X1 
pbaq=pbMu'*paMu 
 

2
u i i i i

n
βα

i 1

ˆ ˆˆ ˆE* β exp(X β) exp(W X Wq α)


       
 
pbbq=pbMu'*pbMu 
 

2
i i i

n
ββ

i 1

ˆÊ* exp(X β) X Xq


      
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2SRI Asymptotic Standard Errors -- Notes on Stata Implementation (cont’d) 
 
 
D11=v1 

 
*

11 ˆAVAR *ˆ ( )D α  
 
D12=v1*pbaq'*invsym(pbbq) 
 

*
12 βα

1
ββD̂ qˆ ˆˆAVAR *(α)E* qE*

           

 
D22= invsym(pbbq)*pbaq*v1*pbaq'* invsym(pbbq)+v2 
 

*
22 ββ β βα

1
ββ

1
α

ˆ ˆ ˆ ˆˆE* E* AVAR *(D̂ q q q qα) E* ' E*
 

                 
 ˆAVAR *(β)  

                
D=D11, D12 \ D12', D22 
 

* *
11 12
* *
12 22

ˆ ˆD D
D̂*

ˆ ˆD D

 
 

  
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2SRI -- Notes on Stata Implementation:  Results 
 
               1              2              3              4              5 
    +----------------------------------------------------------------------------+ 
  1 |      variable       estimate         t-stat   wrong-t-stat        p-value  | 
  2 |                                                                            | 
  3 |      CIGSPREG      -.0140086      -3.678995       -4.07594       .0002342  | 
  4 |        PARITY       .0166603       3.180623       3.410309       .0014696  | 
  5 |         WHITE       .0536269       4.217293       4.545233       .0000247  | 
  6 |          MALE       .0297938       3.130267         3.3546       .0017465  | 
  7 |         xuhat       .0097786       2.557676       2.830723       .0105374  | 
  8 |      constant       1.948207       117.6448       123.7389              0  | 
    +----------------------------------------------------------------------------+ 
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Multi-Stage Causal Effect Estimators 

-- Here the focus is on the evaluation of the anticipated or past effect of a specified 

policy on the value of an economic outcome of interest (Y) – the outcome.   

-- The policy in question is typically defined in terms of a past or proposed change in 

a specified variable ( pX ) – the policy variable.   

-- For example, consider the analysis of potential gains in infant birth weight (Y) 

that may result from effective prenatal smoking prevention and cessation policy. 

-- Here, pX  represents smoking during pregnancy and the policy of interest, if fully 

effective, would maintain zero levels of smoking for non-smokers (prevention) and 

convince smokers to quit before becoming pregnant (cessation). 
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Multi-Stage Causal Effect Estimators:  The Potential Outcomes Framework 

-- For contexts in which the policy variable of interest ( pX ) is qualitative (binary), 

 Rubin (1974, 1977) developed the potential outcomes framework (POF) which 

 facilitates clear definition and interpretation of various policy relevant 

 treatment effects.  

-- Terza (2014) extends the POF to encompass contexts in which pX  is quantitative 

 (discrete or continuous) and planned policy changes in pX  are incremental or 

 infinitesimal.  See also Angrist and Pischke (2009), pp. 13-15 and 52-59. 

Angrist and Pischke (2009), Mostly Harmless Econometrics, Princeton, N.J.:  Princeton University Press  
 
Terza, J.V. (2014):  "Health Policy Analysis from a Potential Outcomes Perspective: Smoking During Pregnancy 

and Birth Weight,” Unpublished manuscript, Department of Economics, Indiana University Purdue 
University Indianapolis. 
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Multi-Stage Causal Effect Estimators:  Review of the POF 

-- Defining *
pXY  to be the random variable representing the distribution of potential 

outcomes as they would manifest if the policy variable were exogenously mandated 

(ceteris paribus) to be *
pX  – as in a fully effective policy intervention like the 

smoking and birthweight example described above.   

  



41 
 

  Multi-Stage Causal Effect Estimators:  Review of the POF (cont’d) 

-- Here we draw the distinction between pX , the observable or factual version of the 

policy variable, and *
pX , its unobservable (hypothetically mandated) or 

counterfactual version. 

-- Likewise we use Y to denote the observable version of the outcome, while *
pXY  is 

the policy-relevant counterfactual. 

-- Note that the symbols pX  and Y are doing notational double duty in that they are 

used as generic conceptual representations of the policy variable and outcome, 

respectively, and are also used denote their observable versions.  
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  Multi-Stage Causal Effect Estimators:  Review of the POF (cont’d) 

--Clearly, the only measures of the effects of changes in the policy variable on the 

outcome that are policy relevant are those that are causally interpretable (CI).  

-- We take as axiomatic that an effect measure is CI only if it is defined in terms of 

changes in the relevant potential outcome -- e.g., a change from pre
pXY  to post

pXY that 

would be caused by a policy-induced exogenous change in pX  from pre-policy to 

post policy (say from pre
pX  to post

pX ).   
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Multi-Stage Causal Effect Estimators:  Review of the POF (cont’d) 

-- This ensures that such a measure represents outcome effects that can be 

exclusively attributed to exogenously mandated (ceteris paribus) changes in the 

policy variable. 

-- Without loss of generality we write post pre
p pX X Δ   (Δ being the mandated policy 

change). 
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Multi-Stage Causal Effect Estimators:  Review of the POF (cont’d) 

-- In generic terms, the estimation objective here is the difference between the 

distributions of pre
pXY  and pre

pX ΔY


 [or some particular aspect (parameter) thereof], 

where pre
pX  and pre

pX Δ  represent well-defined and mandated pre- and post-

intervention versions of the policy variable, respectively.  

-- For example, in a number of empirical policy analytic contexts, the following 

average incremental effect (AIE) is of interest 

  pre pre
p pX Δ XAIE(Δ) E[Y ] E[Y ]


  .        (5) 

-- Terza (2014) shows how the AIE and other counterfactual causal measures can be 

estimated using nonlinear regression methods and observable (factual) data. 
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Review of the POF:  Back to the Example 
 

-- In our birth weight/smoking example 

 -- pre
pX  would denote the pre-policy prenatal smoking distribution 

 -- pre
pΔ X  is the policy-induced change in prenatal smoking 

 -- pre
pXY  is the random variable representing the pre-policy distribution of birth  

   weights 

 -- post
pXY  is the random variable representing the post-policy potential    

   birth weight outcomes. 
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Review of the POF:  Back to the Example (cont’d) 
 
--  The relevant version of the AIE in this example is 

 
  pre

p
0 XAIE(Δ) E[Y ] E[Y ]  .         (6) 

 
-- As this example demonstrates, in the general potential outcomes (PO) policy 

analytic framework, both pre
pX  and Δ can be random variables. 
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Multi-Stage Causal Effect Estimators:  Review of the POF (cont’d) 

 
-- Expression (5) is, in fact, quite general.  For example, when the policy variable is 

binary, if we set pre
pX 0  and Δ = 1 then (5) measures the average treatment effect 

(ATE) 

 
 1 0ATE E[Y ] E[Y ]  .           (7) 

 
-- Note that in this case Δ, pre

pX  and pre
pX Δ , are all degenerate random variables. 
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Multi-Stage Causal Effect Estimators:  Review of the POF (cont’d) 

-- When the policy variable is continuous and no specific policy increment (Δ) has 

been defined (in which case it is typically assumed that Δ approaches 0), then the 

average marginal effect (AME) of an infinitesimal change in the policy variable is 

measured as 

 
δ 0

AIE(δ)AME lim
δ

              (8) 

where AIE(δ) is defined as in (5) and δ is a constant (a degenerate random 

variable). 
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Multi-Stage Causal Effect Estimators:  Review of the POF (cont’d) 

-- The measures defined in (5), (7) and (8) are logical targets for health policy 

analysis.   

-- Moreover, they are CI because they are PO-based.   

-- Which of them is apropos a particular policy context will depend on the support 

of the policy variable in question and whether or not the policy increment (Δ ) is 

known.   
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Specification and Estimation AIE, ATE and AME via Regression Modeling 

-- The expected potential outcome ( *
pXE[Y ]), can be rewritten in a way that facilitates 

the specification [estimation] of (5), (7) and (8) via nonlinear regression (NR) models 

[methods]. 

 * *
p p o u

*
p o uX X ,X ,XE[Y ] E μ(X , X , X ,τ)             (9) 

where 

 p o u p o uμ(X , X , X ,τ) E[Y | X , X , X ]  

  oX  is a vector of observable confounders for pX  

 and 

 uX  is a scalar comprising all unobservable confounders for pX . 
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 Specification and Estimation AIE, ATE and AME via Regression Modeling (cont’d) 

 
-- Using (9), the AIE, ATE and AME can be rewritten as: 

 
  pre pre

p o u p o u

pre pre
p o u p o uX ,X ,X X ,X ,XAIE E μ(X , X , X ,τ) E μ(X , X , X ,τ)


            

                 (10) 
 

 o u o uX ,X o u X ,X o uATE E μ(1, X , X ,τ) E μ(0, X , X ,τ)           (11) 
 
and 

 pre
p o u

* pre
p p

*
p o u

*X ,X ,X
p X X

μ(X , X ,X ;τ)
E

X


 
   
  

.       (12) 
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Specification and Estimation AIE, ATE and AME via Regression Modeling (cont’d) 

-- Assuming that we have a consistent estimator for τ (say τ̂ ) and an appropriate 

observable proxy value for the unobservable uX   [say u
ˆ ˆX (W,τ) -- note that we have 

already mentioned such a proxy in the context of 2SRI estimation, viz., the first-

stage residual], consistent estimators for (10), (11) and (12) are, respectively: 

    n pre pre
pi i oi u i pi oi u i

i 1

1 ˆ ˆˆ ˆ ˆ ˆAIE μ(X Δ ,X , X (W ,τ);τ ) μ(X ,X , X (W ,τ);τ )
n

     

                 (13) 
 

    n
oi u i oi u i

i 1

1 ˆ ˆˆ ˆ ˆ ˆAIE μ(1,X , X (W ,τ);τ ) μ(0,X , X (W ,τ);τ )
n

     (14) 

 
pre*

p pi

*n p oi u i
*i 1 p X X

ˆ ˆ ˆμ(X ,X , X (W ,τ);τ )1AME
n X




 


.      (15) 
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Asymptotic Properties of  AIE  ,  AIE   and AME 

-- We use the notation “PE” to denote the relevant policy effect [AIE, ATE or AME] 

and rewrite AIE, ATE and AME in generic form as 

 
n

i

i 1

pe
PE

n
                (16) 

 
where  ipe  is shorthand notation for pre

pi i oi u i
ˆ ˆ ˆpe(X , Δ , X ,X (W ,τ),τ), τ̂  is the 

consistent estimator of τ and 

 pre pre
p o u p o upe(X , Δ, X ,X (W,δ),τ) μ(X , X ,X (W,τ),τ)     

         pre
p o uμ(X , X ,X (W,τ),τ)  for  (13) 
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Asymptotic Properties of  AIE  ,  AIE   and AME (cont’d) 

  
 pre

p o u o upe(X , Δ, X ,X (W,τ),τ) μ(1, X ,X (W,τ);τ)          

         o uμ(0, X , X (W,τ);τ)   for (14) 

 
* pre
p p

*
p o upre

p o u *
p X X

μ(X ,X ,X (W,τ);τ)
pe(X , Δ, X ,X (W,τ),τ)

X






 . for (15) 
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Asymptotic Properties of  AIE  ,  AIE   and AME (cont’d) 

-- We can cast ˆ[τ PE] as a 2SOE: 

 -- First stage... consistent estimation of τ (e.g. via 2SRI). 

 -- Second stage... PE itself is easily shown to be the optimizer of the following  

  objective function 

       
n

i
i 1

ˆq(τ, PE, Z )

  

 where 

   
i

2
iˆq(τ, PE, Z ) (pe PE)     

 pre
i pi ii [Y ]Z X W  and τ̂  is the first-stage estimator of τ. 
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Asymptotic Properties of  AIE  ,  AIE   and AME (cont’d) 

-- Because we can cast ˆ[τ PE] as a 2SOE, we know that under general conditions 

 

1 d
2D n N(0,I)

PEPE

τ̂ τ     
         

. 

 
The practical version of the consistent estimator of the partition of D that pertains 

to PE is the following analog to (4): 

 

 *
22 PE PE PEτ PEτ P

1
EPE

1ˆ ˆ ˆ ˆˆE* E* AVAD̂ q q q qR *(τ) E* ' E*
 

                 

              AVAR *(PE)   (17) 
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Asymptotic Properties of  AIE  ,  AIE   and AME (cont’d) 

where  
  
 PE PEÊ * nq     
  

 n
PEτ τ i

i 1
q* eˆ pE


      

  
 

τ ipe is shorthand notation for pre
p oτ upe(X , Δ, X ,X (W,τ),τ)  evaluated at   

  pre
pi i oi u i

ˆ ˆ ˆ[X Δ X X (W ,τ) τ] 
 

    n 2
i

i 1
(peAVAR *(PE) PE)


  

and  ˆAVAR *(τ) is the correct estimator of the asymptotic covariance matrix of τ̂ . 
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Asymptotic Properties of  AIE  ,  AIE   and AME (cont’d) 

In summary, we rewrite (17) as 

 

     n n n* 2
22 τ i τ i i2 i 1 i 1 i 1

1D̂ pe peˆAVAR *(τ) ' (pe PE)
n   

             
   




   (18) 

 

-- So, for example, the “t-statistic”  *
22(PE PE) D̂/  is asymptotically standard 

normally distributed and can be used to test the hypothesis that 0PE PE  for 0PE , 

a given null value of PE. 
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Example:  AIE of Smoking During Pregnancy on Birthweight 

--  The objective is to evaluate a policy that would bring smoking during pregnancy 
 to zero. 
 
--  Pre-policy version of the policy variable:  pre

p pX X  

--  Post-policy version of the policy variable: 
post
p pX X Δ   where pΔ X   

--  AIE estimator is the version of (16) in which 

 pre
p o upe(X , Δ, X ,X (W,τ),τ)  

    p p o o u u p p o o u uexp([X ]β X β X β ) exp(X β X β X β )         
where 
 
 u pX = X exp(Wα)  
 
and τ [α β ]   .  
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AIE of Smoking on Birthweight – Asymptotic Standard Error 
 

-- The estimator of the correct asymptotic variance estimator of PE is the version of 

(18) with 

 
 

p o oτ α β β βpe [ pe pe pe pe]       
 
and ape  as shorthand notation for pre

a p o upe(X , Δ, X ,X (W,τ),τ)   

 [a = α,  pβ , oβ  or uβ ]. 

 
-- Similarly, we use 

a ipe  as shorthand notation for ape  evaluated at 

 pre
pi i oi u i

ˆ ˆ ˆ[X Δ X X (W ,τ) τ]. 
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AIE of Smoking on Birthweight – Asymptotic Standard Error 
 
-- In this example we have 
 
 
 

α i u pi i p oi o ui ui
ˆ ˆ ˆ ˆˆˆpe = exp(Wα)β exp([X Δ ]β X β X β )      

          pi p oi o ui u i
ˆ ˆ ˆˆexp(X β X β X β ) W     

 

 


pβ pi i p oi o ui u pi ii
ˆ ˆ ˆˆpe exp([X Δ ]β X β X β )[X Δ ]       

          pi p oi o ui u pi
ˆ ˆ ˆˆexp(X β X β X β )X  

 
  

 


oβ pi i p oi o ui u pi p oi o ui u oii

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆpe exp([X Δ ]β X β X β ) exp(X β X β X β ) X           

 
 

 
uβ pi i p oi o ui u pi p oi o ui u uii

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆpe exp([X Δ )]β X β X β ) exp(X β X β X β ) X           

 

 
where ui pi i

ˆ ˆX X exp(Wα)    



62 
 

AIE of Smoking on Birthweight: MATA Code for AIE Estimate 
 
 
/************************************************* 
** Compute the estimated average incremental  ** 
** effect (the policy effect) for each    ** 
** individual in the sample.     ** 
*************************************************/ 
pei=exp(x1incb1):-exp(x1b1) 
 

pre
p o upe(X , Δ, X ,X (W,τ),τ)  

    p p o o u u p p o o u uexp([X ]β X β X β ) exp(X β X β X β )         
 
/************************************************* 
** Compute the AIE.     ** 
*************************************************/ 
 
pe=mean(pei) 
 


n

i

i 1

pe
PE

n
    
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AIE of Smoking on Birthweight: MATA Code for Requisite Gradient Components 
 

/************************************************* 
** Construct the gradient component of the asy ** 
** variance of the AIE that pertains to alpha. ** 
*************************************************/ 
palfa=-expwalpha:*bxu:*pei:*W 
 


α i u pi i p oi o ui ui

ˆ ˆ ˆ ˆˆˆpe = exp(Wα)β exp([X Δ ]β X β X β )      

          pi p oi o ui u i
ˆ ˆ ˆˆexp(X β X β X β ) W     

 
/************************************************* 
** Construct the gradient component of the asy ** 
** variance of the AIE that pertains to betap. ** 
*************************************************/ 
pbetap=exp(x1incb1):*xpinc:-exp(x1b1):*xp 
 


pβ pi i p oi o ui u pi ii
ˆ ˆ ˆˆpe exp([X Δ ]β X β X β )[X Δ ]       

          pi p oi o ui u pi
ˆ ˆ ˆˆexp(X β X β X β )X  
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AIE of Smoking on Birthweight: MATA Code for Requisite Gradient Components 

(cont'd) 

 
/************************************************* 
** Construct the gradient component of the asy  ** 
** variance of the AIE that pertains to betao   ** 
** and betau.         ** 
** NOTE THAT X0 INCLUDES XUHAT.     ** 
*************************************************/ 
pbetao=pei:*X0 
 
 
 

o uβ β pi i p oi o ui u pi p oi o ui ui i
ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ[ pe pe ] exp([X Δ ]β X β X β ) exp(X β X β X β )            

 

                oi ui
ˆ[X X ]  
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AIE of Smoking on Birthweight: MATA Code for the Estimated Asymptotic 

Covariance Matrix 

/************************************************* 
** Sum and concatenate to construct the full   ** 
** gradient component of the asy variance of the** 
** AIE.           ** 
*************************************************/ 
ppe=colsum(palfa),colsum(pbetap),colsum(pbetao) 
 
 
/************************************************* 
** Compute the estimated asymptotic variance of ** 
** the AIE.          ** 
*************************************************/ 
varpe=(1:/n^2):*(ppe*D*ppe':+sum((pei:-pe):^2)) 
 
 

    n n n* 2
22 τ i τ i i2 i 1 i 1 i 1

1D̂ pe peˆAVAR *(τ) ' (pe PE)
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4 LINES OF CODE TO CALCULATE THE CORRECT ASY VARIANCE 
ESTIMATE FOR THE AIE ESTIMATOR 
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GLM Exponential Condition Mean NLS Regression 
               1              2              3              4              5 
    +----------------------------------------------------------------------------+ 
  1 |      variable       estimate         t-stat   wrong-t-stat        p-value  | 
  2 |                                                                            | 
  3 |      CIGSPREG      -.0140086      -3.678995       -4.07594       .0002342  | 
  4 |        PARITY       .0166603       3.180623       3.410309       .0014696  | 
  5 |         WHITE       .0536269       4.217293       4.545233       .0000247  | 
  6 |          MALE       .0297938       3.130267         3.3546       .0017465  | 
  7 |         xuhat       .0097786       2.557676       2.830723       .0105374  | 
  8 |      constant       1.948207       117.6448       123.7389              0  | 
    +----------------------------------------------------------------------------+ 

 
AIE of Eliminating Smoking During Pregnancy 

                    1              2              3              4              5              6 
    +-------------------------------------------------------------------------------------------+ 
  1 |                  %smoke-decr    incr-effect        std-err         t-stat        p-value  | 
  2 |                                                                                           | 
  3 |  2SRI-correct            100       .2300237       .0726222       3.167401       .0015381  | 
  4 |  c-delta-meth            100       .2300237       .0703486       3.269771       .0010763  | 
  5 |    2SRI-wrong            100       .2300237       .0661442        3.47761       .0005059  | 
  6 |  w-delta-meth            100       .2300237       .0636395       3.614479        .000301  | 
    +-------------------------------------------------------------------------------------------+ 

 


