Introduction 00	Methods and formulas	The penlogit command O	Example 00000000000	Conclusions 00

Approximate Bayesian logistic regression via penalized likelihood estimation with data augmentation

Andrea Discacciati Nicola Orsini

Unit of Biostatistics and Unit of Nutritional Epidemiology Institute of Environmental Medicine Karolinska Institutet http://www.imm.ki.se/biostatistics/ andrea.discacciati@ki.se

2014 Italian Stata Users Group meeting

13th November 2014

Background

- Bayesian analyses are uncommon in epidemiological research
- Partly because of the absence of Bayesian methods from most basic courses in statistics...
- ...but also because of the misconception that they are computationally difficult and require specialized software
- However, approximate Bayesian analyses can be carried out using standard software for frequentist analyses (e.g.: Stata)
- This can be done through penalized likelihood estimation, which in turn can be implemented via data augmentation

Aims of this presentation

- Introduce penalized likelihood (PL) estimation in the context of logistic regression
- Present a new Stata command (penlogit) that fits penalized logistic regression via data augmentation
- Show a practical example of a Bayesian analysis using penlogit

How to fit a Bayesian model

A partial list (in order of increasing "exactness"):

- Monte Carlo sensitivity analysis
- Inverse-variance weighting (information-weighted averaging)
- Penalized likelihood
- Posterior sampling (e.g.: Markov chain Monte Carlo (MCMC))

Introduction	Methods and formulas	The penlogit command	Example	Conclusions
00	○●○○○○○	O	0000000000	00

Penalized log-likelihood

• A penalized log-likelihood (PLL) is a log-likelihood with a penalty function added to it

PLL for a logistic regression model

 $\ln \left[L\left(\beta;x\right) \right] + P(\beta) =$

 $\sum_{i} \left\{ \ln \left[\exp i \left(x_{i}^{T} \beta \right) \right] y_{i} + \ln \left[1 - \exp i \left(x_{i}^{T} \beta \right) \right] (n_{i} - y_{i}) \right\} + P(\beta)$

- $\beta = \{\beta_1, \dots, \beta_p\}$ is the vector of unknown regression coefficients
- In (L (β; x)) is the log-likelihood of a standard logistic regression
- $P(\beta)$ is the penalty term
- The penalty P(β) pulls or shrinks the final estimates away from the ML estimates, toward m = {m₁,..., m_p}

Bayesian perspective

Link between PLL and Bayesian framework

We add the logarithm of the prior density function $f(\beta)$ as the penalty term $P(\beta)$ in the log-likelihood

- A prior for a parameter β_i is a probability distribution that reflects one's uncertainty about β_i before the data under analysis is taken into account
- Two extreme cases: priors with $+\infty$ variance and priors with 0 variance

Introduction 00	Methods and formulas 000●000	The penlogit command O	Example 00000000000	Conclusions 00

Normal priors

- Normal priors for β_i (In(OR)): $\beta_i \sim N(m_i, v_i)$
- These priors are symmetric and unimodal
- *m_i*=mean=median=mode
- Amount of background information controlled by the variance v_i
- Equivalently, these are log-normal priors on the OR scale $(\exp(\beta_i))$

Penalty function

$$\mathcal{P}(\widetilde{eta}) = -rac{1}{2} \left[\sum_{j=1}^{q} rac{1}{v_j} \left(eta_j - m_j
ight)^2
ight]$$

Andrea Discacciati

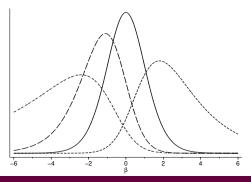
Karolinska Institutet

Approximate Bayesian logistic regression via PLE with DA

Introduction	Methods and formulas	The penlogit command	Example	Conclusions
00	0000●00	O	00000000000	00

Generalized log-F priors

- Characterized by 4 parameters: $\beta_i \sim \log-F(m_i, df_{1,i}, df_{2,i}, s_i)$
- These priors are unimodal (m_i) , but can be skewed (increasing the difference between $df_{1,i}$ and $df_{2,i}$)
- Log-F priors are more flexible than normal priors and are useful for example when prior information is directional



Approximate Bayesian logistic regression via PLE with DA

Posterior distribution

Posterior distribution and PLL

The PLL is, apart from an additive constant, equal to the logarithm of the posterior distribution of β given the data

- In terms of PL: $PL(\beta; x) \propto f(\beta|x) = k \times L(\beta; x) \times \prod_{j} f_j(\beta_j)$
- Maximum PL estimate of β (β_{post}) is the maximum a posteriori estimate
- $100(1-\alpha)$ % Wald CL are the approximate posterior limits, i.e. the $\frac{\alpha}{2}$ and $(1-\frac{\alpha}{2})$ quantiles of the posterior distribution
- It the profile PLL of β_i is not closely quadratic, it is better to use penalized profile-likelihood limits to approximate posterior limits

Introduction 00	Methods and formulas ○○○○○○●	The penlogit command O	Example 00000000000	Conclusions
_				

Data-augmentation priors (DAPs)

- Algebraically equivalent way of maximizing the PLL is using DAPs
- Prior distributions on the parameters are represented by prior data records created ad hoc
- Prior data records generate a penalty function that imposes the desired priors on the model parameters
- Estimation carried out using standard ML machinery on the augmented dataset (i.e. original and DAP records)

Advantage of PL estimation via DAPs

By translating prior distributions to equivalent data, DAPs are one way of understanding the logical strength of the imposed priors

penlogit — a brief overview

Description

penlogit provides estimates for the penalized logistic model, whose PLL
was defined in slide 5, using data augmentation priors

- Specify a binary outcome and one or more covariates
- Priors can be imposed using the nprior and lfprior options
- Penalized profile-likelihood limits can be obtained with the ppl option
- net install penlogit, from(http://www.imm.ki.se/biostatistics/stata/)

Introduction	Methods and formulas	The penlogit command	Example	Conclusions
00		O	●0000000000	00
The data				

The data

- Data from a study of obstetric care and neonatal death (n = 2992)
- The full dataset includes a total of 14 covariates
- Univariate analysis: hydramnios during pregnancy as the exposure

	Hydra		
	X = 1	X = 0	Total
Deaths $(Y = 1)$	1	16	17
Survivals $(Y = 0)$	9	2,966	2,975
Total	10	2,982	2,992

• Sparse data (only one exposed case)

Introduction	Methods and formulas	The penlogit command	Example	Conclusions
00	0000000	O	o●oooooooooo	00
Frequen	tist analysis			

Frequentist analysis

- No explicit prior on β_{hydram}
- This corresponds to an implicit prior $N(0, +\infty)$
- This prior gives equal odds on $OR = 10^{-100}$, OR = 1 or $OR = 10^{100}$

Logistic regres	sion				r of obs =	2992
death		Std. Err.				-
	3.025156	1.083489	2.79	0.005	.9015571	5.148755
death		Std. Err.			-	
	3.025156		.081980		783916	

- OR = 20.6 (95% profile-likelihood C.I.: 1.08, 119)
- Profile-likelihood function for β_{hydram} is strongly asymmetrical

Specifying the prior for β_{hydram}

- Normal prior on β_{hydram}
- Prior information was expressed in terms of 95% prior limits on the OR scale: (1, 16)
- Under normality, it is easy to calculate the corresponding hyperparameters m_{hydram} and v_{hydram} that yield those 95% prior limits
- $\beta_{hydram} \sim N(\ln(4), 0.5)$
- Semi-Bayes analysis because we do not impose a prior on the intercept β_0

Direct PLL maximization

PLL maximized using mlexp in Stata 13

mlexp (log(invlogit({b0}+{xb:hydram}))*death +
 log(1-(invlogit({b0}+{xb:})))*(1-death) 0.5*0.5^(-1)*(xb_hydram-log(4))^2/2992)

. lincom	[xb_]	hydram]_cons,	or		
				Std. Err.		 Interval]
				3.732409	0.009	20.62039

• OR_{post} (95% Wald posterior limits) = 5.65 (1.55, 20.6)

PLL estimation via DAPs

- Data augmentation has the advantage of showing the strength of the prior being imposed
- It shows the number of cases and noncases that would supply data information about the coefficient approximately equivalent to the information supplied by the prior
- The prior N(ln(4),0.5) supplies data information roughly equivalent to 4.5 cases and 4.5 noncases (see penlogit output in the next slide)

Introduction	Methods and formulas	The penlogit command O	Example 00000●00000	
PLL esti	mation via DA	Ps		
penlogi	t Stata command			
pe	• •	dram, nprior(hyd opl(hydram) or	dram ln(4) 0.5)	
Normal prior		No. or median OR (95% PL): - cases=4.54 noncases=4.1		
death	Odds Ratio Std. E	rr. z P> z	[95% Conf. Interval]	
hydram	5.652642 3.7326	72 2.62 0.009	1.549416 20.6222	
death	[95% PL Conf. Inter	val]		
hydram	1.509324 19.8	4511		

- OR_{post} (95% PL posterior limits) = 5.65 (1.50, 19.8)
- Similar to the Wald posterior limits because of the symmetrizing effect of the normal prior

Andrea Discacciati

Introduction	Methods and formulas	The penlogit command	Example	Conclusions
00		O	000000●0000	00

MCMC and comparison of the results

- MCMC analysis carried out using OpenBUGS called from within Stata (see John Thompson's commands: wbsrun, wbsscript, ...)
- 1 chain, 20,000 samples form the posterior distribution
- Results, not surprisingly, are virtually identical

	A	pproxima	ate	
Estimation method	posterior percentiles			
	50th	2.5th	97.5th	
Direct PLE (mlexp)†	5.652	1.549	20.620	
PLE via DAPs (penlogit)‡	5.652	1.509	19.845	
MCMC (OpenBUGS)	5.595	1.505	19.433	

- †: 95% Wald posterior limits
- ‡: 95% penalized profile-likelihood posterior limits

Andrea Discacciati

Approximate Bayesian logistic regression via PLE with DA

Introduction 00	Methods and formulas	The penlogit command O	Example 0000000●000	Conclusions

Multivariate analysis: specifying the priors

- 14 covariates
- The model parameters were given three possible priors
- They reflected the background clinical information on the different risk factors of neonatal death

Covariate	Variable name	Prior	Prior percentiles		ntiles
			50th	2.5th	97.5th
Past abortion	abort	Normal(0,0.5)	1.00	0.25	4.00
No monitor	nomonit	Normal(In(2),0.5)	2.00	0.50	8.00
Early age	teenages	Normal(In(2), 0.5)	2.00	0.50	8.00
Hydramnios	hydram	Normal(In(4),0.5)	4.00	1.00	16.00
Twin, triplet	twint	Normal(In(4), 0.5)	4.00	1.00	16.00

Andrea Discacciati

Approximate Bayesian logistic regression via PLE with DA

PLL estimation via DAPs

• With penlogit it is easy to specify the priors on the 14 coefficients

penlogit Stata command

penlogit death abort nomonit teenages [...] hydram twint, nprior(abort 0 0.5 nomonit ln(2) 0.5 teenages ln(2) 0.5 [...] hydram ln(4) 0.5 twint ln(4) 0.5) ppl(nomonit teenages [...] hydram twint) or

Introduction 00	Methods and formulas	The penlogit command O	Example 000000000●0	Conclusions

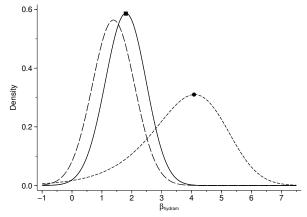
Approximate posterior percentiles

		Approximate posterior percentiles					
Covariate	Variable name	Data	Data augmentation		MCMC		2
		50th	2.5th	97.5th	50th	2.5th	97.5th
Past abortion	abort	0.83	0.31	1.9	0.79	0.29	1.9
No monitor	nomonit	1.7	0.68	4.8	1.8	0.71	5.0
Early age	teenages	1.6	0.61	4.0	1.6	0.59	4.0
Hydramnios	hydram	6.1	1.6	23	6.0	1.6	22
Twin, triplet	twint	5.2	1.8	14	5.3	1.8	14

 Again, posterior percentiles from PLE via DAPs and from MCMC showed exceptionally good agreement

Introduction	Methods and formulas	The penlogit command	Example	Conclusions
00		O	0000000000●	00

Prior, posterior, and profile-likelihood for β_{hydram}



• The posterior distribution is almost perfectly symmetric because of the symmetrizing effect of the normal prior

Introduction	Methods and formulas	The penlogit command	Example	Conclusions
00	0000000	O	00000000000	●0
Strength	s of PLE via DAPs	s for Bayesian analy	/ses	

- Does not require the use of specialized software
- Computationally easier than simulation methods (e.g.: MCMC)
- Also useful for Bayesian sensitivity analyses and to provide reasonable starting values and convergence checks for MCMC
- DAPs provide a critical perspective on the proposed priors

Caveats

- Approximate posterior mode and 95% posterior limits (but adequate in the context of observational epidemiology)
- Uses same large-sample approximations as ML (but more stable thanks to the stabilizing and symmetrizing effect of the penalty)
- Profile-posterior limits if the posterior distribution is non-normal

Introduction	Methods and formulas	The penlogit command	Example	Conclusions
00	0000000	O	00000000000	⊙●
D.C				

References

- Discacciati, A., Orsini, N., and Greenland, S. Approximate Bayesian logistic regression via penalized likelihood estimation with data augmentation. Submitted to the *Stata Journal*.
- Greenland, S. (2006). Bayesian perspectives for epidemiologic research. I. Foundations and basic methods. *International Journal of Epidemiology*, 35, 765-778.
- Greenland, S. (2007). Bayesian perspectives for epidemiologic research. II. Regression analysis. *International Journal of Epidemiology*, 36, 195-202.
- Greenland, S. (2007). Prior data for non-normal priors. *Statistics in Medicine*, 26, 3578-3590.
- Sullivan, S., and Greenland, S. (2013). Bayesian regression in SAS software. *International Journal of Epidemiology*, 42, 308-317.