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The fixed-effects stochastic frontier (SF) model

yit = αi + xitβ + εit , (1)

εit = vit − uit , i = 1, . . . , n, t = 1, . . . ,T , (2)

where, for each unit i and period t:

yit represents the output;

xit is a 1× k vector of exogenous inputs;

β is a k × 1 vector of technology parameters;

αi is the unit fixed-effect;

vit is the idiosyncratic error;

uit the one-sided disturbance which represents inefficiency.
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Distributional assumptions - homoskedastic model

vit ∼ IID N (0, ψ2), (3)

uit ∼ IID Fu(µ, σ2), i = 1, . . . , n, t = 1, . . . ,T , (4)

vit and uit are independently distributed;

The inefficiency uit has distribution with support defined over
R+, mean µ and variance parameter σ2 (e.g., half-normal
(µ = 0), exponential (µ = σ) or truncated-normal);

vit is normally distributed with variance ψ2.
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Heterogeneity

Heterogeneity: can be observable or unobservable;

Model (1)-(2) adds αi (unobservable) to shift the production
(cost) function;

Observable heterogeneity is reflected in measured variables;

Examples are:
1 Heteroskedastic inefficiency → σit = exp(zitδ);
2 Heteroskedastic noise → ψit = exp(ritγ);
3 Heterogeneity in the inefficiency mean → µit = sitξ;

It might be that zit = rit = sit .
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The Maximum Dummy Variable approach

Greene (2005) propose to estimate model (1)−(4) by treating
the unit-specific intercepts as parameters to be estimated;

This approach has been implemented in the sfpanel

command (Belotti et al., 2013);

However, as Greene’s simulations suggest, this approach leads
to inconsistent variance estimates, especially in short panels.

Since these parameters represent the key ingredients in the
post-estimation of inefficiencies, a solution to this issue is
crucial in the SF context.
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Our contribution

The new command sftfe allows the estimation of the fixed-effects
SF models via three alternative estimators (Belotti and Ilardi, 2012;
Chen et al., 2014)1;

They exploit the first-difference data transformation to eliminate the
fixed-effects achieving consistency for both fixed-n and fixed-T
asymptotics;

sftfe allows to estimate models in which inefficiency follows a
first-order autoregressive process as well as to model inefficiency’s
variance (eventually also the mean) as a function of exogenous
covariates.

1
Belotti and Ilardi (2012) has been revised including the extension of the Chen et al. (2014) approach to

heteroskedastic and dynamic inefficiency models. The updated version is available from
http://www.econometrics.it.
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Eliminate the nuisance parameters

We get rid of the nuisance parameters through a first-difference
data transformation

∆yi = ∆Xiβ + ∆εi , (5)

∆εi = ∆vi −∆ui , (6)

where ∆yi = (∆yi2, . . . ,∆yiT ) with ∆yit = yit − yit−1 and ∆Xi is
the T − 1× k matrix of time-varying covariates with the t-th row
denoted by ∆xit = (∆xit1, . . . ,∆xitk), ∀ t = 2, . . . ,T .
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First-differenced model
Idiosyncratic error - ∆vi

The normality assumption for vit implies that ∆vi has a
T − 1-variate normal distribution with covariance matrix
Ψ = ψ2ΛT−1, where ΛT−1 is

ΛT−1 =


2 −1 0 · · · 0
−1 2 −1 · · · 0

0 −1
. . .

. . .
...

...
. . .

. . .
. . . −1

0 0 . . . −1 2

 (7)
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First-differenced model (ctd)
Inefficiency - ∆ui

The multivariate distribution of ∆ui is generally unknown;

Nevertheless, given the independence assumption between
∆vi and ∆ui , the marginal likelihood contribution L∗i can be
defined in general terms as

L∗i (θ) =

∫
f (∆vi ,∆ui ) d∆ui =

∫
f (∆vi )f (∆ui ) d∆ui

=

∫
f (∆yi |∆ui )f (∆ui ) d∆ui (8)

where θ is the parameter vector to be estimated.
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How to estimate the model: MMLE

Marginal Maximum Likelihood estimator (MMLE, Chen
et al., 2014);

1 The basic idea is to exploit the Closed Skew Normal class of
distributions (CSN, Gonzalez-Farias et al., 2004) that, thanks to its
closeness property under marginalization and linear transformations,
allows to derive a closed form expression for the marginal likelihood
function in equation (8);

2 Feasible only when inefficiency has truncated-normal (or
half-normal) distribution;

3 Extension to heteroskedastic (or dynamic) inefficiency is
cumbersome when T > 5 since the estimation requires the
approximation of T-variate Gaussian integrals (see Kumbhakar and
Tsionas, 2011; Chen et al., 2014).
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How to estimate the model: MMSLE

Marginal Maximum Simulated Likelihood estimator (MMSLE,
Belotti and Ilardi, 2012);

1 The basic idea is that estimation can be accomplished via
simulation, treating the marginal likelihood function in equation (8)
as an expectation with respect to the random vector ∆ui ;

2 Feasible when inefficiency has half-normal or exponential
distribution;

3 Extension to heteroskedastic inefficiency is feasible but constrained
(only time-invariant covariates can be used to model inefficiency
variability);

4 Extension to dynamic inefficiency not feasible.
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How to estimate the model: ...

The MMLE is cumbersome when the inefficiency (and/or the
idiosyncratic error) is allowed to be heteroskedastic and
T > 5;

The MMSLE imposes a restriction: the variance can only be
expressed as a function of time-invariant exogenous
explanatory variables.

Solution: Pairwise Difference estimator (PDE, Belotti and
Ilardi, 2012).
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How to estimate the model: PDE

Pairwise Difference estimator (PDE, Belotti and Ilardi, 2012);

1 The basic idea is to exploit the closeness property of the
normal-exponential (or the normal-truncated normal via the
CSN framework) marginal likelihood function when T = 2 to
define a U-estimator based on all pairwise quasi likelihood
contributions;

2 Feasible and computationally efficient when inefficiency is
heteroskedastic and has half-normal, exponential or
truncated-normal distribution;

3 Extension to dynamic inefficiency is feasible and
straightforward when the latter has truncated-normal (or
half-normal) distribution.
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The basic sftfe syntax is the following

sftfe depvar
[
indepvars

] [
if
] [

in
] [

, options
]

Factor variables are allowed.

Options:
estimator(type) specifies the estimator to be used. May be
mmle, mmsle and pde. Default is pde.

cost specifies a cost frontier model; default is production frontier
model.
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MMLE’s specific options

distribution(distname) specifies the inefficiency
distribution. Can be hnormal or tnormal. Default is hnormal.

ghkdraws([#] , [type(string) antithetics]) governs the draws
used in Geweke-Hajivassiliou-Keane (GHK) simulation of
higher-dimensional cumulative multivariate normal
distributions. if # is omitted, the number of draws is set to
100. The type(string) suboption specifies the type of
sequence in the simulation, can be halton, hammersley,
ghalton, random, with halton being the default; antithetics
requests antithetic draws; If this option is omitted, the
estimation is performed exploiting the result outlined in Kotz
et al. (2000) through Gauss-Hermite quadrature.
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MMSLE’s specific options

distribution(distname) specifies the inefficiency
distribution. Can be exponential or hnormal. Default is
exponential.

usigma(varlist [, noconstant]) specifies that inefficiency is
heteroscedastic, with variance expressed as a function of
time-invariant covariates defined in varlist. Specifying
noconstant suppresses the intercept in this function.
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MMSLE’s specific options - 2

simtype(string) specifies the method to generate random
draws for the first-differenced inefficiency. Can be uniform, for
uniformly distributed random variates, or halton (the default)
for Halton sequences.

nsimulations(#) specifies the number of draws used in the
simulation. The default is 250.

base(#) specifies the number, preferably a prime, used as a
base for the generation of Halton sequences. The default is 5.
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PDE’s specific options

distribution(distname) specifies the inefficiency
distribution. Can be exponential, hnormal or tnormal. Default
is hnormal.

dynamic specifies that inefficiency follows a first-order
autoregressive process. Only when distribution(distname)
is hnormal or tnormal.
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PDE’s specific options - 2

emean(varlist m [, noconstant]) may be used only with
distribution(tnormal). With this option, sftfe specifies
the inefficiency mean as a linear function of the covariates
defined in varlist m.∗

usigma(varlist u [, noconstant]) specifies that inefficiency is
heteroscedastic, with variance expressed as a function of
covariates defined in varlist u.∗

vsigma(varlist v [, noconstant]) specifies that idiosyncratic
error is heteroscedastic, with variance expressed as a function
of covariates defined in varlist v.∗

∗ Specifying noconstant suppresses the constant in this function.
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Postestimation

predict
[
type

]
newvar

[
if
] [

in
] [

, statistic
]

where statistic includes:

xb, the default, calculates the linear prediction.

stdp calculates the standard error of the linear prediction.

u produces estimates of (technical or cost) inefficiency via
E(u|ε) using the Jondrow et al. (1982) estimator.

jlms produces estimates of (technical or cost) efficiency via
exp [−E(u|ε)].

alpha produces estimates of fixed-effects.
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Syntax examples

Homoskedastic normal-truncated normal model via MMLE:

sftfe y x1 x2, est(mmle) dist(tn)

Homoskedastic normal-exponential model via MMLE:

sftfe y x1 x2, est(mmsle) dist(exp) nsim(250) base(7)

Heteroskedastic normal-exponential model via PDE:

sftfe y x1 x2, est(pde) dist(exp) usigma(z1 z2)

Heteroskedastic and dynamic normal-half normal model via PDE:

sftfe y x1 x2, est(pde) dist(hn) dynamic usigma(z1 z2)
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MMSLE vs MMLE - Data Generating Process

We consider the homoskedastic normal-half normal model
investigated by Chen et al. (2014), that is

yit = αi + βxit + vit − uit , (9)

vit ∼ N (0, ψ2), (10)

uit ∼ N+
(
0, σ2

)
i = 1, . . . , n, t = 1, . . . ,T , (11)

where
the fixed-effect parameters α1, ..., αn are drawn from a standard Gaussian
random variable; xit = 0.5αi +

√
0.52wit with wit ∼ N (0, 1);

For each experiment, we use the same αi and xit in all replications, thus
only uit and vit are redrawn in each replication;

We set β = 1, σ
ψ

= λ = 2, and consider different sample sizes
(n = 100, 250) and panel lengths (T = 5, 10);

The analysis is based on 250 replications for each experiment.
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Results: MMSLE vs MMLE (n = 100)

T = 5

MMSLE MMLE
Bias MSE Bias MSE

β -0.002 0.004 -0.002 0.004
σ -0.025 0.028 -0.050 0.061
ψ -0.006 0.010 4.5e-04 0.012

E(u|ε) -0.036 0.324 -0.055 0.348
ru,û 0.707 0.707

( 0.644 ) ( 0.644 )

T = 10

MMSLE MMLE
Bias MSE Bias MSE

β -0.001 0.001 -0.001 0.001
σ -0.051 0.010 -0.007 0.009
ψ 0.036 0.003 0.004 0.003

E(u|ε) -0.047 0.268 -0.012 0.266
ru,û 0.752 0.752

( 0.692 ) ( 0.692 )

The bias may be reduced by increasing the number of draws
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Results: MMSLE vs MMLE (n = 250)

T = 5

MMSLE MMLE
Bias MSE Bias MSE

β 0.001 0.001 0.001 0.001
σ 0.002 0.011 0.001 0.012
ψ -0.011 0.004 -0.011 0.005

E(u|ε) -0.016 0.304 -0.017 0.305
ru,û 0.711 0.711

( 0.651 ) ( 0.651 )

T = 10

MMSLE MMLE
Bias MSE Bias MSE

β 0.001 3.7e-04 8.8e-04 3.6e-04
σ -0.025 0.004 -0.004 0.004
ψ 0.016 0.001 -2.9e-04 0.001

E(u|ε) -0.026 0.261 -0.009 0.261
ru,û 0.752 0.752

( 0.691 ) ( 0.691 )
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Dynamic PDE - Data Generating Process

We specify the following heteroskedastic normal-half normal model
with AR(1) inefficiencies

yi = αi ιT + βxi + vi − ui , (12)

vi ∼ NT (0, ψ2It), (13)

ui ∼ N+
T

(
0, (1− ρ2)−1Ωi

)
, i = 1, . . . , n, (14)

where
Ωi = {ωits}t,s=1,...,T with ωits = σitσisρ

|t−s| and σit = exp(γ0 + zitγ1);

α1, ..., αn and zit are drawn from a standard Gaussian random variable
while xit = 0.5αi +

√
0.52wit with wit ∼ N (0, 1);

We set β = 0.5, ψ = 0.5, γ0 = −0.5 and γ1 = 1 (this implies
λ̄ = 1

nTψ

∑n
i=1

∑T
t=1 σit ≈ 2).
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Dynamic PDE - Data Generating Process

The simulation of the inefficiency vector ui is performed using
the MCMC approach outlined in Geweke (1991), which uses a
Gibbs algorithm for sampling from an arbitrary multivariate
truncated normal distribution;

We consider two different values for the ρ parameter
(ρ = 0.3, 0.7), different sample sizes (n = 100, 250) and panel
lengths (T = 5, 10);

The analysis is based on 250 replications for each experiment.
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Dynamic PDE (ρ = 0.3, n = 100)

T = 5

Bias MSE

β -0.002 0.001
γ0 -0.061 0.051
γ1 -0.013 0.011
ψ -0.002 0.001
ρ 0.071 0.039

E(u|ε) 0.028 0.249
ru,û 0.952

( 0.781 )

T = 10

Bias MSE

β -7.8e-04 5.5e-04
γ0 -0.009 0.019
γ1 -0.004 0.005
ψ 5.4e-04 6.0e-04
ρ 0.034 0.024

E(u|ε) 0.032 0.173
ru,û 0.970

( 0.806 )
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Dynamic PDE (ρ = 0.3, n = 250)

T = 5

Bias MSE

β -0.001 4.3e-04
γ0 -0.013 0.016
γ1 -0.009 0.004
ψ -0.001 6.2e-04
ρ 0.018 0.023

E(u|ε) 0.018 0.233
ru,û 0.957

( 0.784 )

T = 10

Bias MSE

β -6.9e-04 2.1e-04
γ0 0.009 0.007
γ1 -0.010 0.002
ψ 0.002 2.5e-04
ρ 0.036 0.011

E(u|ε) 0.037 0.170
ru,û 0.971

( 0.810 )
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Dynamic PDE (ρ = 0.7, n = 100)

T = 5

Bias MSE

β -0.003 0.001
γ0 -0.220 0.104
γ1 -0.012 0.007
ψ -6.3e-04 0.002
ρ -0.008 0.010

E(u|ε) -0.123 0.515
ru,û 0.955

( 0.800 )

T = 10

Bias MSE

β -9.7e-04 7.2e-04
γ0 -0.088 0.030
γ1 -0.010 0.003
ψ 0.002 7.1e-04
ρ -0.019 0.004

E(u|ε) -0.050 0.346
ru,û 0.974

( 0.838 )
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Dynamic PDE (ρ = 0.7, n = 250)

T = 5

Bias MSE

β -0.001 5.2e-04
γ0 -0.180 0.054
γ1 -0.012 0.003
ψ -0.002 7.1e-04
ρ -0.011 0.004

E(u|ε) -0.106 0.496
ru,û 0.959

( 0.801 )

T = 10

Bias MSE

β -3.9e-04 2.5e-04
γ0 -0.073 0.012
γ1 -0.013 0.001
ψ 0.002 3.0e-04
ρ -0.019 0.002

E(u|ε) -0.039 0.336
ru,û 0.975

( 0.842 )
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