Influence functions at work

Philippe Van Kerm

Luxembourg Institute of Socio-Economic Research philippe.vankerm@liser.lu

2016 German Stata Users Group meeting June 10 2016, GESIS, Cologne

Introduction

- Illustration of practical uses of 'influence function' estimators with Stata
 - Study structure of some summary statistics of interest—e.g., 'social indicators'
 - identification of 'influential observations'
 - robustness properties
 - 2. Variance estimation and testing
 - 3. "RIF regression"
- Application to income distribution analysis

Definition

Let v(F) be a statistic of interest (a functional) calculated in distribution F, e.g. the mean, the median, a percentile, the Gini coefficient of inequality, a 'top (income) share', a correlation or regression coefficient, etc.

The *influence function* of v is a function of y and F and is defined as (Hampel, 1974)

IF
$$(y; v, F) = \lim_{\epsilon \downarrow 0} \frac{v((1-\epsilon)F + \epsilon \Delta_y) - v(F)}{\epsilon}$$

The IF captures the effect on v(F) of an infinitesimal 'contamination' of F at point mass y.

Definition (ctd.)

Expressions for IF(y; v, F) exist (or can be derived) for a wide range of statistics v^1 :

... simple (linear) statistics, e.g., the mean

$$\operatorname{IF}(y; \mu, F) = y - \mu(F)$$

... and more complex (non linear) statistics, e.g., a quantile

$$\operatorname{IF}(y; Q_{\theta}, F) = rac{1}{f(Q_{\theta}(F))}(\theta - I(y \leq Q_{\theta}(F)))$$

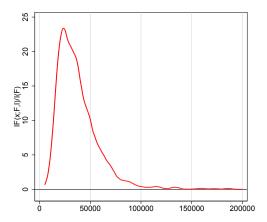
¹See e.g., Essama-Nssah and Lambert (2012) for a catalogue of IFs relevant to income distribution analysis

Practical use 1

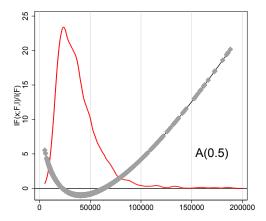
Practical use 1:

- visualising the 'structure' of a (possibly complex) index
- comparison of indices (think of the many inequality measures!)
- identification of influential observations (and robustness of the index)

The Atkinson inequality index (Atkinson, 1970):

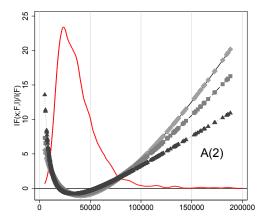

$$A(\epsilon) = 1 - \frac{1}{\mu} \left(\frac{1}{N} \sum_{i=1}^{N} y_i^{1-\epsilon} \right)^{\frac{1}{1-\epsilon}}$$

for $\epsilon \geq 0$

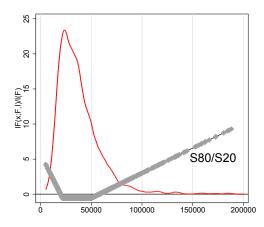

The higher ϵ , the higher 'inequality aversion'... Can we visualise that?

$$IF(y; A(\epsilon)) = \mu_{\epsilon}^{\frac{\epsilon}{1-\epsilon}} \frac{(y^{1-\epsilon} - \mu_{\epsilon})}{(\epsilon - 1)\mu} + \mu_{\epsilon}^{\frac{1}{1-\epsilon}} \frac{(y - \mu)}{\mu^2}$$

(Cowell and Flachaire, 2007)

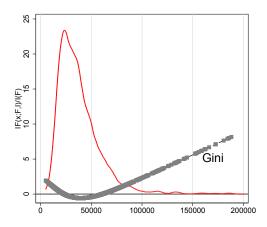


Changing sensitivity—'inequality aversion parameters'

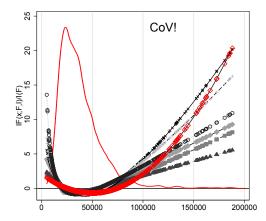


Changing sensitivity—'inequality aversion parameters'

Income inequality: other measures


How does it compare with the other possible indicators of inequality: Quintile (Group) Share Ratio?

Income inequality: other measures


How does it compare with the other possible indicators of inequality: Gini coefficient?

Income inequality: other measures

How does it compare with the other possible indicators of inequality ...

Practical use 2

Practical use 2:

- estimation of the sampling variance of the index
- asymptotic approximation that works with complex non-linear statistics
- works seamlessly with complex survey design!
- ... it is all in the Stata manuals already

Variance estimation

An asymptotic approximation of the variance of v is given by (Hampel, 1974)

$$V(v,F) \approx \int \mathrm{IF}(y;v,F)^2 dF(y)$$

Practically boils down to estimation of a total (Deville, 1999):

$$V(\hat{v}, F) \approx V\left(\sum_{i=1}^{N} w_i \mathrm{IF}(y_i; v, \hat{F})\right)$$

... and formula well-known for the variance of a total even with complex survey design: implemented in Stata!

Variance estimation

Code template

```
svyset ...
generate rif= ... // point estimate is added to IF eval
svy: mean rif
```

```
(Silly) example with the mean:
svyset [pw=W] , ...
su y [aw=W]
gen rifmean = r(mean) + (y - r(mean))
svy: mean rifmean
svy: mean y
```


-Variance estimation

Variance estimation

svyset as usual

. svyset uorigid [pw=wvar] , strata(ustrata) singleunit(centered)

pweight: wvar VCE: linearized Single unit: centered Strata 1: ustrata SU 1: uorigid FPC 1: <zero>

-Variance estimation

Variance estimation

Built in some user-written commands

		aly nivie , Jaly on estim			30520			
Survey	data ar	nalysis						
Number Number	of stra of PSUs	ata = 5 = 3	63 ,679		Number of Populatic Design df F(0, Prob > F	3616)	=	3,731 511,900.22 3,616
	nivie	Coef.	Linearized Std. Err.		P> t	[95% C	onf.	Interval]
atkp5	_cons	.0634366	.0022941	27.65	0.000	. 05893	88	.0679345
atk1		.1211497	.0039797	30.44	0.000	.11334	69	.1289524
atk2	_cons	.2228505	.0064922	34.33	0.000	.21012	17	.2355793
s80s20		4.092545	.0973684	42.03	0.000	3.9016	42	4.283447

-Variance estimation

Variance estimation

Built in some user-written commands

		if chme11==1 ly on estima			, atkinso	n(0.5 1 :	2) bo	nferroni
Survey	data ana	lysis						
		a = = 3,			Populati Subpop. Subpop.	on size no. obs size f 3616)	= 51 = = 28 =	3,731 11,900.22 2,337 32,251.64 3,616
	nivie	Coef.	Linearized Std. Err.	t	P> t	[95% C	onf.]	(nterval]
atkp5		. 0544238	.0028886	18.84	0.000	.04876	03	.0600872
atk1		.1050319	.0050275	20.89	0.000	.09517	49	.114889
atk2		.1991793	.0084773	23.50	0.000	.18255	86	.2158
bon	_cons	.3600872	.0070422	51.13	0.000	.34628	02	.3738942

Practical use 3

Practical use 3:

- 'Recentered IF regression' (Firpo et al., 2007, 2009)
 - evaluate impact of covariates on statistics of interest
 - or what covariates are associated with large 'influence'?
 - 'unconditional' (as in Firpo et al.'s 'Unconditional quantile regressions')

RIF regression

The effect of interest

For example, how do foreign households affect v(F)?

$$F(y) = \sum_{x \in \Omega_X} s_x F_x(y)$$

Consider an infinitesimal variation: swap native for foreign workers

$$G_r^{F,t,k}(y) = (s_k+t) F_k(y) + (s_r-t) F_r(y) + \sum_{x \in \Omega_X \setminus \{k,r\}} s_x F_x(y).$$

(Choe and Van Kerm, 2014) What is the impact of this swap on the statistic of interest?

Recentered influence function estimator

Firpo et al. (2009) show that effect of interest is given by:

$$\mathbf{E}[\mathbf{RIF}(y; v, F)|X = k] - \mathbf{E}[\mathbf{RIF}(y; v, F)|X = r]$$

where $\operatorname{RIF}(y; v, F) = v(F) + \operatorname{IF}(y; v, F)$

Regression-based estimator, β in :

$$E[RIF(y; v, F)|X = x] = \alpha + x\beta$$

(Note: N. Fortin provides the Stata package rifreg for regressions on quantile, variance and Gini functionals (http://faculty.arts.ubc.ca/nfortin/datahead.html).)

Interpretation of RIF regression coefficients

- The RIF at y gives the influence on v(F) of an infinitesimal increase in the density of the data at y
- Regression coefficients reveal how much the average influence of observations vary with X (holding other covariates constant)
- ► It also reveals how much v(F) would respond to a change in the distribution of X in the population holding distribution of other covariates constant
 - ▶ linear approximation valid only for *marginal* changes in X!

Illustrative example 1

Effect of foreign households on inequality and poverty?

- Panel Study Liewen zu Letzebuerg 2011 (official source for poverty and inequality statistics in Luxembourg)
- Effect of a marginal increase in share of foreign-headed households on 'social indicators'
 - Assuming no change in income structure otherwise...
 - ... but conditioning on age of foreign households

Illustrative example

Code

```
inequaly nivie , atkinson(0.5 1 2)
svy:
predict rif* , rif // predict after -inequaly- gives (R)IF
    regress rif1 i.(chme11)
svy:
svy: regress rif2 i.(chmell)
svy: regress rif3 i.(chme11)
svy: inequaly nivie , s80s20
predict rifs80s20 . rif
      regress rifs80s20 i.(chme11) i.(chme09)
svy:
svy: newpoverty nivie , fracmedian(.6)
predict rifh , rif
     regress rifh ib9.(rot)
svy:
```

Results: Atkinson(0.5)

```
. svy: regress rif1 i.(chme11)
(running regress on estimation sample)
```

Survey: Linear regression

Number	of	strata	=	63
Number	of	PSUs	=	3,653

Number of obs	=	3,704
Population size	=	506,643.98
Design df	=	3,590
F(3, 3588)	=	6.94
Prob > F	=	0.0001
R-squared	=	0.0088

 rif1	Coef.	Linearized Std. Err.	t	P> t	[95% Conf. Interval		
chme11 Portugais Autres UE-15 Non UE-15	.0120889 .0091529 .0389485	.0046899 .006223 .008964	2.58 1.47 4.34	0.010 0.141 0.000	.0028938 0030481 .0213734	.021284 .0213538 .0565236	
_cons	.0568863	.0034404	16.53	0.000	.0501409	.0636316	

RIF regression

Results: Atkinson(0.5)

. svy: regress rif1 i.(chme11) ib6.(chme09) (running regress on estimation sample)

Survey: Linear regression

Number of strata Number of PSUs		63 553		Number o Populati		- 5	3,704 06,643.98
	-,			Design d		=	3,590
				F(8.		=	128.91
				Prob > F	·	=	0.0000
				R-square	d	=	0.0124
1		Linearized					
rif1	Coef.	Std. Err.	t	P>[t]	[95%	Conf.	Interval]
chme11							
Portugais	.0109198	0048638	2.25	0.025	.0013	837	0204558
Autres UE-15	.009008	.0062075	1.45	0.147	003	626	.0211786
Non UE-15	.0381033	.0090639	4.20	0.000	02 03	324	0558742
chme 09							
<16	0440886	.004096	-10.76	0.000	- 052	194	0360578
[16-24]	.0366149	.0162167	2.26	0.024	. 01	9482	.0684098
[25-34]	.0058699	.0057638	1.02	0.309	005	13 07	.0171705
[35-49]	.0123269	.0055662	2.21	0.027	.001	+136	0232402
[50-64]	.0171677	.0068698	2.50	0.012	. 0036	i986	.0306368
_cons	.0459795	.004096	11.23	0.000	.0379	487	.0540103

JU

Results: QSR

. svy: regress rifs80s20 i.(chme11) ib6.(chme09)
(running regress on estimation sample)

Survey: Linear regression

Number of strat. Number of PSUs	a = = 3.0	63 553		Number of Populatio		= = 5	3,704 06,643.98
				Design di		-	3,590
				F(8.	3583)	=	67.63
				Prob > F		=	0.0000
				R-square	d	-	0.0113
		Linearized					
rifs80s20	Coef.	Std. Err.	t	P> t	[95%	Conf.	Interval]
chme11							
Portugais	188026	.2295635	-0.82	0.413	6381	1139	.262062
Autres UE-15	.3467313	.2627993	1.32	0.187	1685	5195	.8619821
Non UE-15	1.429164	5102629	2.80	0.005	.428	298	2.429598
chme 09							
<16	-1.580931	.1790653	-8.83	0.000	-1.932	2011	-1.229851
[16-24]	1.471687	.8037972	1.83	0.067	1042	2585	3.047631
25-341	.5860454	.3011544	1.95	0.052	0044	+055	1.176496
35-491	.5045821	.2424799	2.08	0.038	.029	1698	.9799943
[50-64]	.6556552	.2622047	2.50	0.012	.1419	57.01	1.16974
_cons	3.477878	.1790653	19.42	0.000	3.120	5798	3.828958

.0

Results: Poverty rate

. svy: regress rifh i.(chme11) ib6.(chme09) (running regress on estimation sample)

Survey: Linear regression

Number of strata Number of PSUs		63 553		Number of Populatic Design df F(8 , Prob > F R-squarec	on size 	= 5 = = =	3,704 06,643.98 3,590 61.12 0.0000 0.0128
		Linearized					
rifh	Coef.		t	P> t	[95%	Conf.	Interval]
chme11							
Portugais	0867281	.0291859	-2.97	0.003	1439	95 08	- 0295054
Autres UE-15	0101697	.0218373	-0.47	0.641	0529	9845	.032645
Non UE-15	.0167683	.0478889	0.35	0.726	077	7124	.1106605
chme 09							
<16	.1970039	.0150227	13.11	0.000	.16	5755	.2264578
[16-24]	.1299979	.113194	1.15	0.251	091	1933	.3519288
25-34	.0949819	.0300992	3.16	0.002	.0359	2687	.153995
[35-49]	.0478833	.0214961	2.23	0.026	.0057	7374	0900292
[50-64]	.048386	0207141	2.34	0.020	.0077	734	.0889987
_cons	.1260334	.0150227	8.39	0.000	.0965	5795	.1554874

RIF regression

Results: Poverty rate (fixed poverty line)

. svy: regress rifhbis1 i.(chme11) ib6.(chme09) (running regress on estimation sample)

Survey: Linear regression

Number of strat Number of PSUs		63 553		Number of Populatio		= = 5	3,704 06,643.98
	- ,			Design d		=	3,590
				F(8.		=	45.08
				Prob > F		=	0.0000
				R-square	1	-	0.0998
		Linearized					
rifhbis1	Coef.	Std. Err.	t	P>[t]	[95%	Conf.	Interval]
chme11							
Portugais	.2125625	.0291885	7.28	0.000	.1553	3348	.2697903
Autres UE-15	.0120222	.0195524	0.61	0.539	0263	3126	.0503571
Non UE-15	.2905906	.050822	5.72	0.000	1909	9477	.3902336
chme 09							
<16 j	0369874	0092244	-4.01	0.000	055	073	- 0189019
[16-24]	.3534741	.1375077	2.57	0.010	. 0838	3729	.6230752
25-341	.0904637	.0291149	3.11	0.002	.0333	803	.1475471
35-491	.0644081	0165652	3.89	0.000	. 03	193	.0968862
[50-64]	.0499869	.0156896	3.19	0.001	.0192	254	0807484
_cons	.0369874	.0092244	4.01	0.000	.0189	019	.055073

ווווי

- Atkinson, A. B. (1970), 'On the measurement of inequality', *Journal of Economic Theory* **2**(3), 244–263.
- Choe, C. and Van Kerm, P. (2014), Foreign workers and the wage distribution: Where do they fit in?, CEPS/INSTEAD Working Paper 2014-02, Luxembourg Institute of Socio-Economic Research, Esch-sur-Alzette, Luxembourg.
- Cowell, F. A. and Flachaire, E. (2007), 'Income distribution and inequality measurement: The problem of extreme values', *Journal of Econometrics* 141(2), 1044–1072.
- Deville, J.-C. (1999), 'Variance estimation for complex statistics and estimators: linearization and residual techniques', *Survey Methodology* 25, 193–204.

Essama-Nssah, B. and Lambert, P. J. (2012), Influence functions for policy impact analysis, *in* J. A. Bishop and R. Salas, eds, 'Inequality, Mobility and Segregation: Essays in Honor of Jacques Silber', Vol. 20 of *Research on Economic Inequality*, Emerald Group Publishing, chapter 6, pp. 135–159.

- Firpo, S., Fortin, N. M. and Lemieux, T. (2007), Unconditional quantile regressions, Technical Working Paper 339, National Bureau of Economic Research, Cambridge MA, USA.
- Firpo, S., Fortin, N. M. and Lemieux, T. (2009), 'Unconditional quantile regressions', *Econometrica* 77(3), 953–973.
- Hampel, F. R. (1974), 'The influence curve and its role in robust estimation', *Journal of the American Statistical Association* 69(346), pp. 383–393.

Support from the Luxembourg 'Fonds National de la Recherche' is gratefully acknowledged (project 'Tax-benefit systems, employment structures and cross-country differences in income inequality in Europe: a micro-simulation approach–SIMDECO').