Learning About Selection: An Improved Correction Procedure

Iain G. Snoddy 27 July 2018

Ph.D. Candidate Vancouver School of Economics

2018 Canadian Stata Conference

Question: How to estimate the returns to schooling when people select across locations?

Influential Paper in Economics to control for self-selection: Dahl (2002), *Econometrica*

- Reduces dimension of problem
- Non-parametric implementation
- Control function approach

Earnings Equation:

$$y_{ic} = \alpha_c + \beta_{1c}s_i + \beta_{2c}x_i + u_{ic}, \quad c = 1, \dots, C$$

Utility Equation:

$$V_{ijc} = y_{ic} + \pi_{ijc}, \quad c = 1, \dots, C$$

where $\pi_{ijc} = \gamma_{jc} z_i + \epsilon_{ijc}$, c = 1, ..., C*i* indexes individuals, *c* states, *j* birth state We can re-write the utility function as:

$$V_{ijc} = \mathbb{E}\left[y_{ic}|s_i, x_i\right] + \mathbb{E}\left[\pi_{ijc}|z_i\right] + \epsilon_{ijc} + u_{ic} = \vartheta_{jc} + \omega_{ijc}$$

The selection rule:

$$y_{ic} \text{ observed} \iff \max_{k} \left(\vartheta_{jk} - \vartheta_{jc} + \omega_{ijk} - \omega_{ijc} \right) \le 0$$

Selection bias:

 $E[u_{ic}|y_{ic} \text{ observed}] = E[u_{ic}|\vartheta_{jc} - \vartheta_{jk} \ge \omega_{ijk} - \omega_{ijc}, \forall k \neq c] \neq 0$

Full set of migration probabilities summarise the selection problem: $(p_{ij1}, ..., p_{ijN})$

Estimating equation:

$$y_{ic} = \alpha_c + \beta_{1c}s_i + \beta_{2c}x_i + \sum_j M_{ijc} \times \mu_{jc} \left(p_{ij1}, ..., p_{ijN} \right) + v_{ic}$$

Dahl makes the Single Index Sufficiency Assumption (SISA). All of the information in $(p_{ij1}, ..., p_{ijN})$ is summarised by p_{ijc} .

Which implies:

$$cov(u_{ic}, \omega_{ijm} - \omega_{ijc}) = K, \quad \forall m \neq k$$

Estimating Equation:

$$y_{ic} = \alpha_c + \beta_{1c}s_i + \beta_{2c}x_i + \sum_j M_{ijc} \times \hat{\mu}_{jc} \left(p_{ijc}\right) + v_{ic}$$

- Migration probabilities estimated by grouping individuals into cells
- **selmlog13** Stata command by François Bourguignon, Martin Fournier, and Marc Gurgand

- Cell approach involves ad hoc choices
- Alternative: use a Neural Network, or Random Forest
- Ties researchers' hands
- Reduces variance
- Reduces noise from poor predictors

The SISA is restrictive!

Start with full model:

$$y_{ic} = \alpha_c + \beta_{1c} s_i + \beta_{2c} x_i + \tilde{\mu}_c \left(\hat{p}_{i1}, ..., \hat{p}_{iN} \right) + \tilde{v}_{ic}$$

Use Double-Post LASSO to select included terms!

Belloni, Chernozhukov, and Hansen (2014) LASSO:

$$\min_{\beta} \left(y - X\beta \right)^T \left(y - X\beta \right) \text{ subject to } ||\beta||_1 \leq t$$

where t is a free parameter that determines regularization. Procedure:

- 1. Run LASSO of y on terms
- 2. Run LASSO of x on terms
- 3. Run y on x plus terms included in 1 & 2

Monte Carlo experiment: Use the Roy Model

The SISA: $u_{ic} = \tau_c a_i + b_{ic}$

Three cases:

- SISA holds
- SISA weak violation
- SISA strong violation

Implemented using Lassopack- Ahrens, Hansen, and Schaffer

```
Use square-root LASSO:
```

```
rlasso y p*,sqrt partial(x)
```

```
rlasso s p*,sqrt partial(x)
```

Use loop over macro e(selected) to select terms

Improvement 2: Yes it Works!

Table 1: Monte Carlo Output: 5 Sectors

-								
$\tau_1 \neq 1$								
Bias								
N=1000								
.051								
.048								
.037								
.029								
.051								
.044								
.018								

Empirical Example

Sample: white males, 25-54, using 1990 US Census.

Migration probabilities estimated using:

- Birth state
- 5 education categories
- Married
- # children 5-18, # children <5
- Divorced
- Live with roommate, family member, alone

Table 2: Corrected Estimates versus OLS

	Calif.	Florida	Illinois	Kansas	NY	Texas			
	OLS								
College	0.4291	0.4506	0.3689	0.3465	0.4399	0.5166			
	(0.0075)	(0.0098)	(0.0096)	(0.0192)	(0.0084)	(0.0086)			
Adv	0.5865	0.6618	0.5445	0.4970	0.6037	0.6840			
	(0.0105)	(0.0154)	(0.0138)	(0.0315)	(0.0113)	(0.0131)			
	Double-Post LASSO								
College	0.3727	0.3919	0.3779	0.3737	0.4192	0.5036			
	(0.0138)	(0.0145)	(0.0233)	(0.0345)	(0.0248)	(0.0167)			
Adv	0.4864	0.5344	0.4798	0.4807	0.5462	0.6727			
	(0.0205)	(0.0209)	(0.023)	(0.0447)	(0.0145)	(0.019)			

Table 3: Hausman Test of Difference

	Calif.	Florida	Illinois	Kansas	NY	Texas			
	LASSO v OLS								
College Adv	-5.586^{***} -10.686^{***}	-5.823^{***} -13.021^{***}	$0.955 -7.042^{***}$	$2.763 \\ -2.187$	-2.032 -6.185^{***}	-1.254 -1.5			
	LASSO v Dahl								
College Adv		-4.489^{***} -11.12^{***}	4.854^{**} -1.507	$2.809 \\ -1.648$	7.366*** 4.893***	0.727 2.334			