Upgrading <mark>business statistics</mark> curriculum to meet the needs of knowledge workers

2018 Stata User Group Meeting, Vancouver

Murtaza Haider Ted Rogers School of Management Ryerson University, Canada

Outline

A word about myself

- Questions:
 - Why are we teaching t-tests today?
 - Why business students are being taught the same curriculum as stats majors?
 - What needs to be taught: business statistics or data science?
 - What we teach, what has changed, what must be taught in Business Statistics

Murtaza Haider

Academic

- Teaching number crunching to nonstatisticians
- Author
- Syndicated columnist with the Financial Post

Getting Started with Data Science

Making Sense of Data with Analytics

Murtaza Haider

To non-statisticians

- Business and management faculties are one of the largest in most schools
- The Ted Rogers School of Management enrollment stands at over 10,000 FTE
- Each student takes at least two courses in business statistics

300,000

Degrees conferred by North American business schools (2013/14)

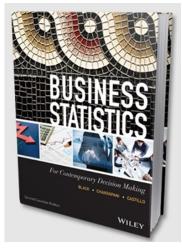
1,100,000 Students enrolled in Business Faculties

Two

Business stats courses taken by undergraduate students

What is being taught?

First Course

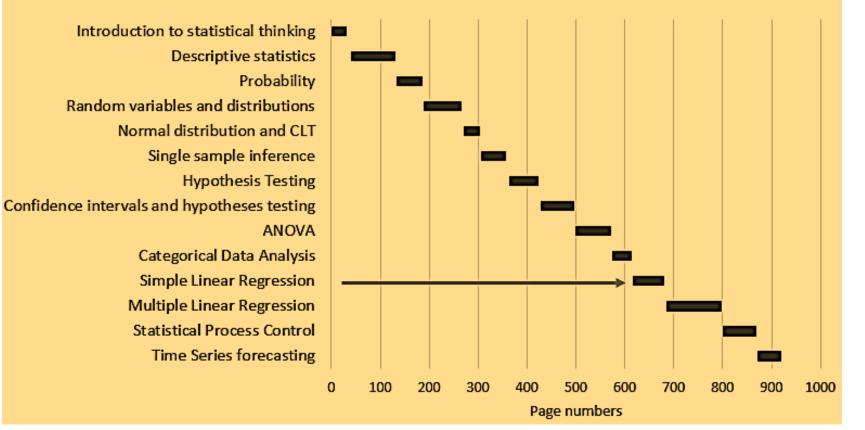

- Oescriptive statistics
- Probability
- OLT
- Probability distributions
 - Normal
 - Binomial
- Hypothesis testing
 - T-tests
 - Correlation tests
 - ANOVA

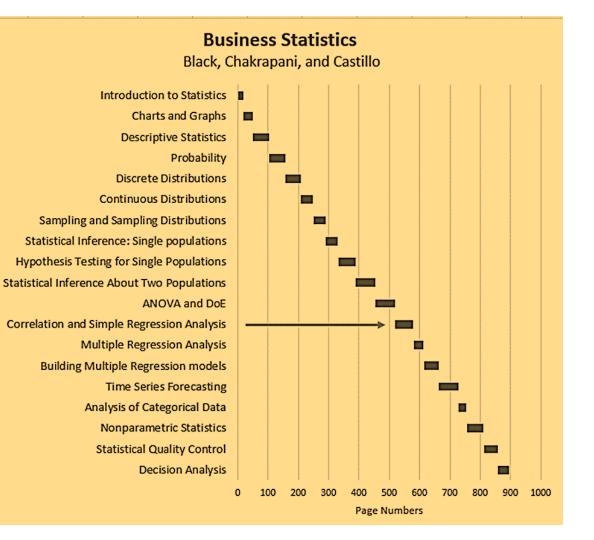
Second Course

- Use of statistical software
 - Mostly SPSS or SAS
 - Rarely R or Stata
- Use of non textbook data sets
- Data collection and sampling
- Regression
 - OLS/ Simple Regression
 - Multivariate Regression
- May be Time series forecasting/GLM

- Focus remains on statistical theory and not data
- Calculator not software
- A mountain of topics before Regression

The 800 lbs. guerilla!



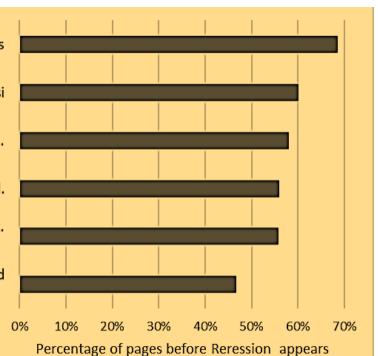

The road to Regression is paved with redundant statistical tools

Statistics for Business and Economics

by McClave and Benson

The Road to Regression

Introduction to Business Statistics by Weiers


Doing Statistics for Business with Excel by Pelosi

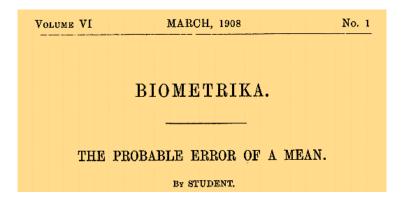
Business Statistics by Black et. al.

Business Statistics by Groebner et. al.

Business Statistics in Practice by Bowerman et. al.

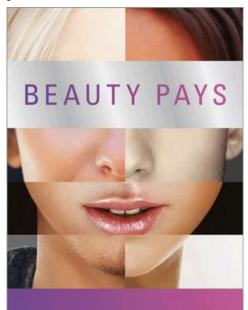
> Introduction to Statistics for Business and Economics by Wonnacott

What's up with <mark>Simple Linear Regression</mark> When All Else is Supposed to be Equal


https://medium.com/@regionomics/is-it-time-to-ditch-the-comparison-of-means-t-test-73571ccd8dd2

Hypothetically Speaking Is it time to ditch the Comparison of Means (T) Test?

For over a century, academics have been teaching the Comparison of Means (T) Test and practitioners have been running it to determine if the mean values of a variable for two groups were statistically different.


It is time to ditch the Comparison of Means (T) Test and rely instead on the ordinary least squares (OLS) Regression.

OLS with a continuous dependent variable and a categorical explanatory variable is the same as a T-test for comparison of means

66

The ultimate beauty test

Why Attractive People Are More Successful

DANIEL S. HAMERMESH

With Equal Variances

T Test

Two-sample t test with equal variances							
Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]	
female male	195 268	.1161091 0844822	.0585646 .0462491	.8178096 .7571299	.0006041 1755415	.2316141 .006577	
combined	463	6.27e-08	.0366516	.7886477	0720244	.0720245	
diff		.2005913	.0737225		.0557176	.345465	
diff = mean(female) - mean(male)t = 2.7209Ho: diff = 0degrees of freedom = 461							
	iff < 0 = 0.9966	Pr(Ha: diff != T > t) = (

OLS Regression

Source	Source SS		MS	Number of obs	=	463
				F(1, 461)	=	7.40
Model	4.54163932	1	4.54163932	Prob > F	=	0.0068
Residual	282.806257	461	.613462597	R-squared	=	0.0158
				Adj R-squared	=	0.0137
Total	287.347896	462	.621965144	Root MSE	=	.78324
beauty	Coef.	Std. Err.	t	P> t [95% C	onf.	Interval]
sex			_			
male	2005913	.0737225	<mark>-2.72</mark>	0.0073454	65	0557176
_cons	.1161091	.0560889	2.07	0.039 .00588	75	.2263306

With Unequal Variances

T Test

Two-sample t test with unequal variances								
Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]		
female male	195 268	.1161091 0844822	.0585646 .0462491	.8178096 .7571299	.0006041 1755415	.2316141 .006577		
combined	463	6.27e-08	.0366516	.7886477	0720244	.0720245		
diff		.2005913	.0746243		.0538851	.3472975		
diff = mean(female) - mean(male)t = 2.6880Ho: diff = 0Satterthwaite's degrees of freedom = 398.744								
Ha: diff < 0 Pr(T < t) = 0.9963 Pr(Ha: diff != T > t) = 1	-	Ha: diff > 0 Pr(T > t) = 0.0037			

OLS Regression

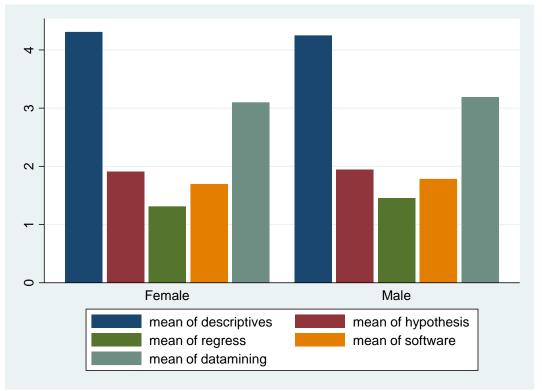
. vwls beauty i.sex

Variance-weigh Goodness-of-fi Prob > chi2	-	ares re = =	gressi	.on	Number (Model c) Prob > (hi2(1)	= = =	463 7.23 0.0072
beauty	Coef.	Std. E	rr.	z	P> z	[95%	Conf.	Interval]
sex male _cons	<mark>2005913</mark> .1161091	.07462 .05856		<mark>-2.69</mark> 1.98	0.007 0.047	3460		0543304 .2308935

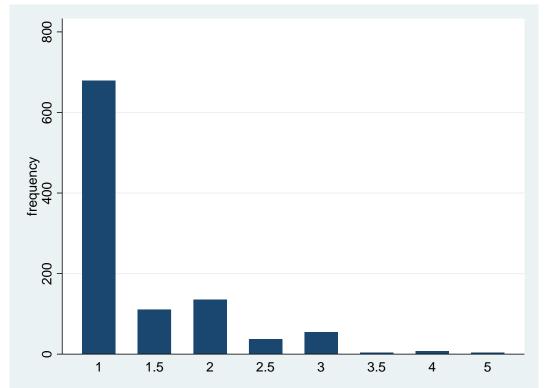
The same goes for ANOVA and Correlation

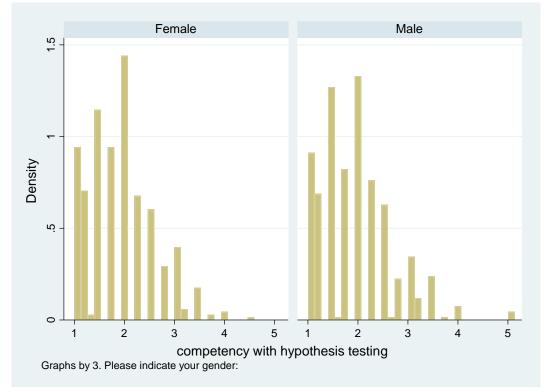
Ditch what you can

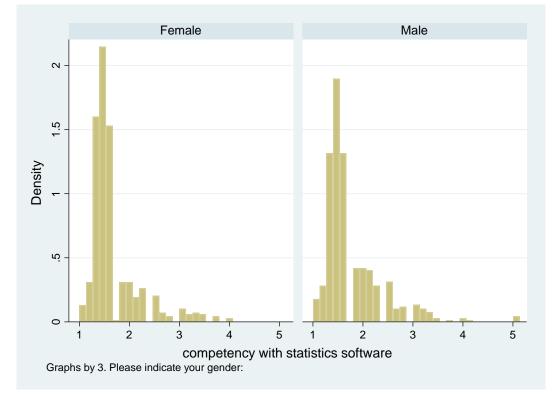
Think Data Science, not Statistics

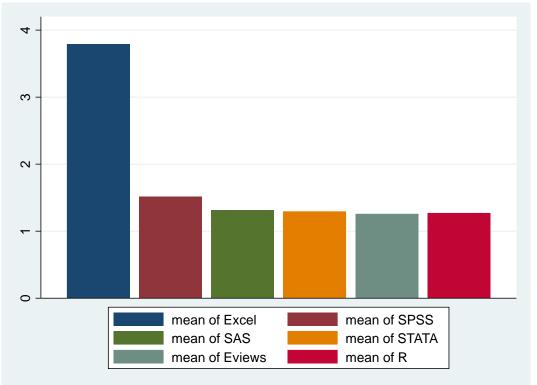

What are students learning?

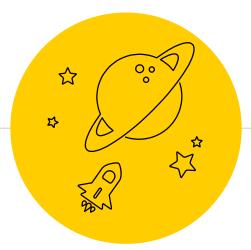
A Case-Control Experiment


- I700 students taking the second course in Business Statistics in the second semester at a certain school
 - The course contents are typical of a second course in business statistics
 - Working with a collaborator
- Oivided in two groups:
 - Treated: Blended learning with online videos
 - Control: Same old same old
- Surveyed in the second half of course
- Some findings


2nd course in Biz Stats in Semester II


Regressing in Regression


Hypothetically different



Excelling in Excel

Say hello to Big Data Science

- Lots of data ... CIT
 - Open data of all types
 - Machine generated
 - Survey data ... Census, PEW, others
 - Consumption data
 - Web engagement data
- Open source software
 - R, Hadoop, etc.
- 🖲 SAAS
- Cloud computing

Changing the computation engine from Mathematics to Computing in Statistics

The death of statistical inference From Sample to Big Population Data

What should be taught

Data comes first

Start with a Puzzle

- · Curriculum should match the needs of the industry
- Life as a biz analyst is about data-driven questions

Data wrangling

Data visualization

Tabulations, X Tabulations

Regression

Machine Learning

We must get unstuck

Needless dependence on mathematics has made our thinking sticky

Teaching of Regression Methods, even if inference is postponed until late, nevertheless belongs to the mainstream

Questions / Comments?

You can find me at

- @regionomics
- murtaza.haider@ryerson.ca
- +1-416-318-1365