Title stata.com

xtpoisson postestimation — Postestimation tools for xtpoisson

Postestimation commands predict margins Remarks and examples Methods and formulas Also see

Postestimation commands

The following postestimation commands are available after xtpoisson:

Command	Description
contrast	contrasts and ANOVA-style joint tests of estimates
*estat ic	Akaike's, consistent Akaike's, corrected Akaike's, and Schwarz's Bayesian information criteria (AIC, CAIC, AICc, and BIC)
estat summarize	summary statistics for the estimation sample
estat vce	variance-covariance matrix of the estimators (VCE)
estimates	cataloging estimation results
etable	table of estimation results
† forecast	dynamic forecasts and simulations
hausman	Hausman's specification test
lincom	point estimates, standard errors, testing, and inference for linear combinations of coefficients
*lrtest	likelihood-ratio test
margins	marginal means, predictive margins, marginal effects, and average marginal effects
marginsplot	graph the results from margins (profile plots, interaction plots, etc.)
nlcom	point estimates, standard errors, testing, and inference for nonlinear combinations of coefficients
predict	linear predictions and their SEs, number of events, incidence rates, probabilities
predictnl	point estimates, standard errors, testing, and inference for generalized predictions
pwcompare	pairwise comparisons of estimates
test	Wald tests of simple and composite linear hypotheses
testnl	Wald tests of nonlinear hypotheses

^{*}estat ic and lrtest are not appropriate after xtpoisson, pa.

 $[\]dagger$ forecast is not appropriate with mi estimation results.

predict

Description for predict

predict creates a new variable containing predictions such as linear predictions, standard errors, numbers of events, incidence rates, probabilities, and the equation-level score.

Menu for predict

Statistics > Postestimation

Syntax for predict

```
Random-effects (RE) model
```

```
predict [type] newvar [if] [in] [, RE_statistic nooffset]
```

Fixed-effects (FE) model

```
predict [type] newvar [if] [in] [, FE_statistic nooffset]
```

Population-averaged (PA) model

```
predict [type] newvar [if] [in] [, PA_statistic nooffset]
```

RE_statistic	Description			
Main				
хb	linear prediction; the default			
stdp	standard error of the linear prediction			
n	predicted number of events marginal with respect to the random effect; only allowed after xtpoisson, re normal			
nu0	predicted number of events assuming the random effect is zero			
iru0	predicted incidence rate assuming the random effect is zero			
pr0(n)	probability $Pr(y = n)$ assuming the random effect is zero			
pr0(<i>a</i> , <i>b</i>)	probability $\Pr(a \leq y \leq b)$ assuming the random effect is zero			

FE_statistic	Description
Main	
хb	linear prediction; the default
stdp	standard error of the linear prediction
nu0	predicted number of events assuming the fixed effect is zero
iru0	predicted incidence rate assuming the fixed effect is zero

PA_statistic	Description				
Main					
mu	predicted number of events; considers the offset(); the default				
rate	predicted number of events				
xb	linear prediction				
pr(n)	probability $Pr(y = n)$				
pr(a,b)	probability $Pr(a \le y \le b)$				
stdp	standard error of the linear prediction				
<u>sc</u> ore	first derivative of the log likelihood with respect to $\mathbf{x}_{it}\boldsymbol{\beta}$				

These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted only for the estimation sample.

Options for predict

Main

xb calculates the linear prediction. This is the default for the random-effects and fixed-effects models.

mu and rate both calculate the predicted number of events. mu takes into account the offset(), and rate ignores those adjustments. mu and rate are equivalent if you did not specify offset(). mu is the default for the population-averaged model.

stdp calculates the standard error of the linear prediction.

n calculates the predicted number of events marginally with respect to the random effect, which means that the statistic is calculated by integrating the prediction function with respect to the random effect over its entire support. This option is only allowed after xtpoisson, re normal.

nu0 calculates the predicted number of events, assuming a zero random or fixed effect.

iru0 calculates the predicted incidence rate, assuming a zero random or fixed effect.

pr0(n) calculates the probability Pr(y = n) assuming the random effect is zero, where n is a nonnegative integer that may be specified as a number or a variable (only allowed after xtpoisson, re).

pr0(a,b) calculates the probability Pr($a \le y \le b$) assuming the random effect is zero, where a and b are nonnegative integers that may be specified as numbers or variables (only allowed after xtpoisson, re);

b missing $(b \ge .)$ means $+\infty$; pr0(20,.) calculates $\Pr(y \ge 20)$; pr0(20,b) calculates $\Pr(y \ge 20)$ in observations for which $b \ge .$ and calculates $\Pr(20 < y < b)$ elsewhere.

pr0(.,b) produces a syntax error. A missing value in an observation of the variable a causes a missing value in that observation for pr0(a,b).

pr(n) calculates the probability Pr(y = n), where n is a nonnegative integer that may be specified as a number or a variable (only allowed after xtpoisson, pa).

 $\operatorname{pr}(a,b)$ calculates the probability $\operatorname{Pr}(a \leq y \leq b)$ (only allowed after xtpoisson, pa). The syntax for this option is analogous to that used with $\operatorname{pro}(a,b)$.

score calculates the equation-level score, $u_{it} = \partial \ln L(\mathbf{x}_{it}\beta)/\partial(\mathbf{x}_{it}\beta)$.

nooffset is relevant only if you specified offset(varname) for xtpoisson. It modifies the calculations made by predict so that they ignore the offset variable; the linear prediction is treated as $\mathbf{x}_{it}\boldsymbol{\beta}$ rather than $\mathbf{x}_{it}\boldsymbol{\beta}$ + offset_{it}.

margins

Description for margins

margins estimates margins of response for linear predictions, numbers of events, incidence rates, and probabilities.

Menu for margins

Statistics > Postestimation

Syntax for margins

```
margins [marginlist] [, options]
margins [marginlist] , predict(statistic ...) [predict(statistic ...) [ options ]
```

Random-effects (RE) model

statistic	Description				
хb	linear prediction; the default after xtpoisson, re				
n	predicted number of events marginal with respect to the random effect; the default				
nu0	predicted number of events assuming the random effect is zero				
iru0	predicted incidence rate assuming the random effect is zero				
pr0(n)	probability $Pr(y = n)$ assuming the random effect is zero				
pr0(a,b)	probability $Pr(a \le y \le b)$ assuming the random effect is zero				
stdp	not allowed with margins				

Fixed-effects (FE) model

statistic	Description
хb	linear prediction; the default
nu0	predicted number of events assuming the fixed effect is zero
iru0	predicted incidence rate assuming the fixed effect is zero
stdp	not allowed with margins

Population-averaged (PA) model

statistic	Description
mu	predicted number of events; considers the offset(); the default
rate	predicted number of events
xb	linear prediction
pr(n)	probability $Pr(y = n)$
pr(a,b)	probability $Pr(a \le y \le b)$
stdp	not allowed with margins
<u>sc</u> ore	not allowed with margins

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.

Remarks and examples

stata.com

Example 1: Predicted number of events and incidence rate with no random effect

In example 1 of [XT] xtpoisson, we fit a random-effects model of the number of accidents experienced by five different types of ships on the basis of when the ships were constructed and operated. Here we obtain the predicted number of accidents for each observation, assuming that the random effect for each panel is zero:

- . use https://www.stata-press.com/data/r18/ships
- . xtpoisson accident op_75_79 co_65_69 co_70_74 co_75_79, exposure(service) irr (output omitted)
- . predict n_acc, nu0

(6 missing values generated)

. summarize n_acc

Variable	Obs	Mean	Std. dev.	Min	Max
n_acc	34	13.52307	23.15885	.0617592	83.31905

From these results, you may be tempted to conclude that some types of ships are safe, with a predicted number of accidents close to zero, whereas others are dangerous, because 1 observation is predicted to have more than 83 accidents.

However, when we fit the model, we specified the exposure(service) option. The variable service records the total number of months of operation for each type of ship constructed in and operated during particular years. Because ships experienced different utilization rates and thus were exposed to different levels of accident risk, we included service as our exposure variable. When comparing different types of ships, we must therefore predict the number of accidents, assuming that all ships faced the same exposure to risk. To do that, we use the iru0 option with predict:

- . predict acc_rate, iru0
- . summarize acc_rate

Variable	Obs	Mean	Std. dev.	Min	Max
acc_rate	40	.002975	.0010497	.0013724	.0047429

These results show that if each ship were used for 1 month, the expected number of accidents is 0.002975. Depending on the type of ship and years of construction and operation, the incidence rate of accidents ranges from 0.00137 to 0.00474.

4

Methods and formulas

The probabilities calculated using the pr0(n) option are the probability $Pr(y_{it} = n)$ for a RE model assuming the random effect is zero. Define $\mu_{it} = \exp(\mathbf{x}_{it}\boldsymbol{\beta} + \text{offset}_{it})$. The probabilities in pr0(n) are calculated as the probability that $y_{it} = n$, where y_{it} has a Poisson distribution with mean μ_{it} . Specifically,

$$Pr(y_{it} = n) = (n!)^{-1} \exp(-\mu_{it})(\mu_{it})^n$$

6 xtpoisson postestimation — Postestimation tools for xtpoisson

Probabilities calculated using the pr(n) option after fitting a PA model are also calculated as described above.

Also see

[XT] xtpoisson — Fixed-effects, random-effects, and population-averaged Poisson models

[U] 20 Estimation and postestimation commands

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Organization of the United Nations. StataNow and NetCourseNow are trademarks of StataCorp LLC. Other brand and product names are registered trademarks or trademarks of their respective companies. Copyright © 1985–2023 StataCorp LLC, College Station, TX, USA. All rights reserved.

For suggested citations, see the FAQ on citing Stata documentation.