Title

xthtaylor postestimation - Postestimation tools for xthtaylor

Postestimation commands References predict Also see margins

Remarks and examples

Postestimation commands

The following postestimation commands are available after xthtaylor:

Command	Description				
estat summarize	summary statistics for the estimation sample				
estat vce	variance-covariance matrix of the estimators (VCE)				
estimates	cataloging estimation results				
etable	table of estimation results				
forecast	dynamic forecasts and simulations				
hausman	Hausman's specification test				
lincom	point estimates, standard errors, testing, and inference for linear combinations of coefficients				
margins	marginal means, predictive margins, marginal effects, and average marginal effects				
marginsplot	graph the results from margins (profile plots, interaction plots, etc.)				
nlcom	point estimates, standard errors, testing, and inference for nonlinear combinations of coefficients				
predict	predictions and their SEs, residuals, etc.				
predictnl	point estimates, standard errors, testing, and inference for generalized predictions				
test	Wald tests of simple and composite linear hypotheses				
testnl	Wald tests of nonlinear hypotheses				

predict

Description for predict

predict creates a new variable containing predictions such as fitted values, standard errors, combined residuals, predictions, random-error components, and idiosyncratic error components.

Menu for predict

Statistics > Postestimation

Syntax for predict

predict	$\lfloor type \rfloor$ newvar $\lfloor if \rfloor \lfloor in \rfloor \lfloor$, statistic \rfloor				
statistic	Description				
Main					
xb	$\mathbf{X}_{it}\widehat{oldsymbol{eta}} + \mathbf{Z}_i\widehat{oldsymbol{\delta}}$, fitted values; the default				
stdp	standard error of the fitted values				
ue	$\widehat{\mu}_i + \widehat{\epsilon}_{it}$, the combined residual				
* xbu	$\mathbf{X}_{it}\widehat{oldsymbol{eta}} + \mathbf{Z}_i\widehat{oldsymbol{\delta}} + \widehat{\mu}_i$, prediction including effect				
*u	$\widehat{\mu}_i$, the random-error component				
* e	$\widehat{\epsilon}_{it}$, prediction of the idiosyncratic error component				

Unstarred statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted only for the estimation sample. Starred statistics are calculated only for the estimation sample, even when if e(sample) is not specified.

Options for predict

Main

xb, the default, calculates the linear prediction, that is, $\mathbf{X}_{it}\hat{\boldsymbol{\beta}} + \mathbf{Z}_{it}\hat{\boldsymbol{\delta}}$.

stdp calculates the standard error of the linear prediction.

ue calculates the prediction of $\hat{\mu}_i + \hat{\epsilon}_{it}$.

xbu calculates the prediction of $\mathbf{X}_{it}\hat{\boldsymbol{\beta}} + \mathbf{Z}_{it}\hat{\boldsymbol{\delta}} + \hat{\nu}_i$, the prediction including the random effect.

u calculates the prediction of $\hat{\mu}_i$, the estimated random effect.

e calculates the prediction of $\hat{\epsilon}_{it}$.

margins

Description for margins

margins estimates margins of response for fitted values.

Menu for margins

Statistics > Postestimation

Syntax for margins

margins	[marginlist] [, options]			
margins	[marginlist], predict(statistic) [options]			
statistic	Description			
xb	$\mathbf{X}_{it}\widehat{oldsymbol{eta}} + \mathbf{Z}_i\widehat{oldsymbol{\delta}}$, fitted values; the default			
stdp	not allowed with margins			
ue	not allowed with margins			
xbu	not allowed with margins			
u	not allowed with margins			
e	not allowed with margins			

Statistics not allowed with margins are functions of stochastic quantities other than e(b). For the full syntax, see [R] margins.

Remarks and examples

stata.com

Example 1

Continuing with example 1 of [XT] **xthtaylor**, we use hausman to test whether we should use the Hausman–Taylor estimator instead of the fixed-effects estimator. We follow the empirical illustration in Baltagi (2013, sec. 7.5), but we fit the model without including the exp2 and wks variables.

We first fit the model with xthtaylor and then with xtreg, fe:

- . use https://www.stata-press.com/data/r18/psidextract
- . xthtaylor lwage occ south smsa ind exp ms union fem blk ed,
- > endog(exp ms union ed)
 (output omitted)
- . estimates store eq_ht
- . xtreg lwage occ south smsa ind exp ms union fem blk ed, fe $(output \ omitted)$
- . estimates store eq_fe

We can now use hausman to compare the two estimators, but we need to specify the df() to indicate the degrees of freedom for the χ^2 statistic, which would be determined by the overidentifying restrictions in the Hausman-Taylor estimation. In this case, there are three degrees of freedom because there are four time-varying exogenous variables (occ, south, smsa, ind) that can be used as instruments for only one time-invariant endogenous variable (ed).

. hausman eq_fe eq_ht, df(3)

	Coeffi	cients ——				
	(b)	(B)	(b-B)	<pre>sqrt(diag(V_b-V_B))</pre>		
	eq_fe	eq_ht	Difference	Std. err.		
occ	0239323	0231694	0007629	.0002395		
south	0037282	.0062699	0099982	.0124188		
smsa	0436251	0433518	0002733	.0042296		
ind	.021184	.0156376	.0055465	.0025159		
exp	.0965738	.0964748	.0000991	.000063		
ms	0299908	0300703	.0000795	.000321		
union	.0349156	.0348494	.0000662	.0006336		
B = Inc				obtained from xtreg ained from xthtaylor		
Test of HO: Difference in coefficients not systematic						
chi2(3) = =	(b-B)'[(V_b-V_ 5.22	B)^(-1)](b-B)				
Prob > chi2 =	0.1567					
(V_b-V_B is not positive definite)						
	-					

The *p*-value for the test provides evidence favoring the null hypothesis; therefore, in this case, the Hausman–Taylor estimation is adequate.

Notice that the variance–covariance matrix for the difference (b–B) is not positive definite. As Greene (2012, 237) points out, this kind of result is due to finite-sample conditions. He also states that Hausman considers it preferable to take the test statistic as zero and, therefore, not to reject the null hypothesis.

4

Example 2

We now want to determine whether the Amemiya–MaCurdy estimator produces significant efficiency gains with respect to the Hausman–Taylor estimator. We refit the two models, and we use the Hausman test again:

```
. use https://www.stata-press.com/data/r18/psidextract
```

```
. xthtaylor lwage occ south smsa ind exp ms union fem blk ed,
> endog(exp ms union ed)
```

```
(output omitted)
```

```
. estimates store eq_ht
```

```
. xthtaylor lwage occ south smsa ind exp ms union fem blk ed,
```

```
> endog(exp ms union ed) amacurdy
  (output omitted)
```

```
. estimates store eq_am
```

Coefficients						
	(b)	(B)	(b-B)	<pre>sqrt(diag(V_b-V_B))</pre>		
	eq_ht	eq_am	Difference	Std. err.		
0000	0231694	023354	.0001846	.0006485		
south	.0062699	.0060857	.0001842	.0010641		
smsa	0433518	0434638	.0001121	.0006297		
ind	.0156376	.0156602	0000226	.000492		
exp	.0964748	.0962147	.00026	.0000694		
ms	0300703	0303139	.0002436	.0006735		
union	.0348494	.0345742	.0002752	.0006471		
fem	1277756	1287857	.0010101	.0036717		
blk	2911574	291645	.0004876	.0082831		
ed	. 1390257	.1380699	.0009558	.005436		
<pre>b = Consistent under H0 and Ha; obtained from xthtaylor. B = Inconsistent under Ha, efficient under H0; obtained from xthtaylor.</pre>						
Test of HO: Difference in coefficients not systematic						
$chi2(10) = (b-B)'[(V_b-V_B)^{(-1)}](b-B)$ = 14.42						
Prob > chi2 = 0.1548						

The result indicates that we should use the more efficient estimation produced by the Amemiya– MaCurdy estimator.

References

. hausman eq_ht eq_am

Baltagi, B. H. 2013. *Econometric Analysis of Panel Data*. 5th ed. Chichester, UK: Wiley. Greene, W. H. 2012. *Econometric Analysis*. 7th ed. Upper Saddle River, NJ: Prentice Hall.

Also see

[XT] xthtaylor — Hausman-Taylor estimator for error-components models

[U] 20 Estimation and postestimation commands

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Organization of the United Nations. StataNow and NetCourseNow are trademarks of StataCorp LLC. Other brand and product names are registered trademarks or trademarks of their respective companies. Copyright © 1985–2023 StataCorp LLC, College Station, TX, USA. All rights reserved.

4

For suggested citations, see the FAQ on citing Stata documentation.