Title stata.com

xtgee postestimation — Postestimation tools for xtgee

Postestimation commands predict margins estat Remarks and examples Also see

Postestimation commands

The following postestimation command is of special interest after xtgee:

Command	Description
estat wcorrelation	estimated matrix of the within-group correlations

The following standard postestimation commands are also available:

Command	Description
contrast	contrasts and ANOVA-style joint tests of estimates
estat summarize	summary statistics for the estimation sample
estat vce	variance-covariance matrix of the estimators (VCE)
estimates	cataloging estimation results
etable	table of estimation results
*forecast	dynamic forecasts and simulations
hausman	Hausman's specification test
lincom	point estimates, standard errors, testing, and inference for linear combinations of coefficients
margins	marginal means, predictive margins, marginal effects, and average marginal effects
marginsplot	graph the results from margins (profile plots, interaction plots, etc.)
nlcom	point estimates, standard errors, testing, and inference for nonlinear combinations of coefficients
predict	means, rates, probabilities, etc.
predictnl	point estimates, standard errors, testing, and inference for generalized predictions
pwcompare	pairwise comparisons of estimates
test	Wald tests of simple and composite linear hypotheses
testnl	Wald tests of nonlinear hypotheses

^{*}forecast is not appropriate with mi estimation results.

predict

Description for predict

predict creates a new variable containing predictions such as predicted values, probabilities, linear predictions, standard errors, and the equation-level score.

Menu for predict

Statistics > Postestimation

Syntax for predict

```
\texttt{predict} \ \left[ \textit{type} \ \right] \ \textit{newvar} \ \left[ \textit{if} \ \right] \ \left[ \textit{in} \ \right] \ \left[ \ \textit{, statistic} \ \ \underline{\texttt{nooff}} \\ \texttt{set} \ \right]
```

statistic	Description
Main	
mu	predicted value of depvar; considers the offset() or exposure(); the default
<u>r</u> ate	predicted value of <i>depvar</i>
pr(n)	probability $\Pr(y_{it} = n)$ for family(poisson) link(log)
pr(a,b)	probability $\Pr(a \leq y_{it} \leq b)$ for family(poisson) link(log)
xb	linear prediction
stdp	standard error of the linear prediction
score	first derivative of the log likelihood with respect to $\mathbf{x}_{it}oldsymbol{eta}$

These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted only for the estimation sample.

Options for predict

Main

mu, the default, and rate calculate the predicted value of *depvar*. mu takes into account the offset() or exposure() together with the denominator if the family is binomial; rate ignores those adjustments. mu and rate are equivalent if you did not specify offset() or exposure() when you fit the xtgee model and you did not specify family(binomial #) or family(binomial *varname*), meaning the binomial family and a denominator not equal to one.

Thus mu and rate are the same for family(gaussian) link(identity).

mu and rate are not equivalent for family(binomial pop) link(logit). Then mu would predict the number of positive outcomes and rate would predict the probability of a positive outcome.

mu and rate are not equivalent for family(poisson) link(log) exposure(time). Then mu would predict the number of events given exposure time and rate would calculate the incidence rate—the number of events given an exposure time of 1.

pr(n) calculates the probability $Pr(y_{it} = n)$ for family(poisson) link(log), where n is a nonnegative integer that may be specified as a number or a variable.

pr(a,b) calculates the probability $Pr(a \leq y_{it} \leq b)$ for family (poisson) link(log), where a and b are nonnegative integers that may be specified as numbers or variables;

```
b missing (b \ge .) means +\infty;
pr(20,.) calculates Pr(y_{it} \geq 20);
pr(20,b) calculates Pr(y_{it} \ge 20) in observations for which b \ge . and calculates
Pr(20 \le y_{it} \le b) elsewhere.
```

pr(.,b) produces a syntax error. A missing value in an observation of the variable a causes a missing value in that observation for pr(a,b).

xb calculates the linear prediction.

stdp calculates the standard error of the linear prediction.

```
score calculates the equation-level score, u_{it} = \partial \ln L(\mathbf{x}_{it}\boldsymbol{\beta})/\partial(\mathbf{x}_{it}\boldsymbol{\beta}).
```

nooffset is relevant only if you specified offset(varname), exposure(varname), family(binomial #), or family(binomial varname) when you fit the model. It modifies the calculations made by predict so that they ignore the offset or exposure variable and the binomial denominator. Thus predict ..., mu nooffset produces the same results as predict ..., rate.

margins

Description for margins

margins estimates margins of response for predicted values, probabilities, and linear predictions.

Menu for margins

Statistics > Postestimation

Syntax for margins

```
margins [marginlist] [, options]
  margins [marginlist], predict(statistic ...) [predict(statistic ...) ...] [options]
statistic
             Description
              predicted value of depvar; considers the offset() or exposure(); the default
mu
              predicted value of depvar
rate
pr(n)
              probability Pr(y_{it} = n) for family(poisson) link(log)
              probability Pr(a \leq y_{it} \leq b) for family(poisson) link(log)
pr(a,b)
              linear prediction
xb
stdp
              not allowed with margins
              not allowed with margins
score
```

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.

estat

Description for estat

estat wcorrelation displays the estimated matrix of the within-group correlations.

Menu for estat

Statistics > Postestimation

Syntax for estat

```
estat wcorrelation [, compact format(%fmt)]
```

collect is allowed with estat wcorrelation; see [U] 11.1.10 Prefix commands.

Options for estat

compact specifies that only the parameters (alpha) of the estimated matrix of within-group correlations be displayed rather than the entire matrix.

format(%fmt) overrides the display format; see [D] format.

Remarks and examples

stata.com

Example 1

xtgee can estimate rich correlation structures. In example 2 of [XT] xtgee, we fit the model

- . use https://www.stata-press.com/data/r18/nlswork2 (National Longitudinal Survey of Young Women, 14-24 years old in 1968)
- . xtgee ln_w grade age c.age#c.age
 (output omitted)

After estimation, estat wcorrelation reports the working correlation matrix R:

. estat wcorrelation

Estimated within-idcode correlation matrix R:

	c1	c2	c3	c4	с5	с6
r1 r2 r3 r4 r5 r6 r7	1 .4851356 .4851356 .4851356 .4851356 .4851356 .4851356	1 .4851356 .4851356 .4851356 .4851356 .4851356	1 .4851356 .4851356 .4851356 .4851356 .4851356	1 .4851356 .4851356 .4851356 .4851356	1 .4851356 .4851356 .4851356	1 .4851356 .4851356
r9	.4851356 c7	.4851356 c8	.4851356 c9	.4851356	.4851356	.4851356
r7 r8 r9	1 .4851356 .4851356	1 .4851356	1			

The equal-correlation model corresponds to an exchangeable correlation structure, meaning that the correlation of observations within person is a constant. The working correlation estimated by xtgee is 0.4851. (xtreg, re, by comparison, reports 0.5141; see the xtreg command in example 2 of [XT] **xtgee**.) We constrained the model to have this simple correlation structure. What if we relaxed the constraint? To go to the other extreme, let's place no constraints on the matrix (other than its being symmetric). We do this by specifying correlation (unstructured), although we can abbreviate the option.

```
. xtgee ln_w grade age c.age#c.age, corr(unstructured) nolog
GEE population-averaged model
                                                      Number of obs
                                                                        = 16,085
Group and time vars: idcode year
                                                      Number of groups =
                                                                            3,913
Family: Gaussian
                                                      Obs per group:
Link: Identity
                                                                                1
                                                                   min =
Correlation: unstructured
                                                                              4.1
                                                                    avg =
                                                                    max =
                                                                                9
                                                      Wald chi2(3)
                                                                       = 2405.20
Scale parameter = .1418513
                                                      Prob > chi2
                                                                          0.0000
     ln_wage
               Coefficient
                             Std. err.
                                                  P>|z|
                                                            [95% conf. interval]
                                             z
       grade
                  .0720684
                              .002151
                                         33.50
                                                  0.000
                                                             .0678525
                                                                         .0762843
                  .1008095
                             .0081471
                                         12.37
                                                  0.000
                                                             .0848416
                                                                         .1167775
         age
 c.age#c.age
                -.0015104
                             .0001617
                                         -9.34
                                                  0.000
                                                           -.0018272
                                                                       -.0011936
```

-8.56

0.000

-1.062404

-.6666923

. estat wcorrelation

_cons

Estimated within-idcode correlation matrix R:

-.8645484

	c1	c2	c3	c4	с5	с6
r1 r2 r3 r4 r5 r6 r7	1 .4354838 .4280248 .3772342 .4031433 .3663686 .2819915	1 .5597329 .5012129 .5301403 .4519138 .3605743	1 .5475113 .502668 .4783186 .3918118	1 .6216227 .5685009 .4012104	1 .7306005 .4642561	.50219
r8 r9	.3162028 .2148737 c7	.3445668 .3078491 c8	.4285424 .3337292 c9	.4389241 .3584013	.4696792 .4865802	.5222537 .4613128
r7 r8 r9	1 .6475654 .5791417	1 .7386595	1			

.1009488

This correlation matrix looks different from the previously constrained one and shows, in particular, that the serial correlation of the residuals diminishes as the lag increases, although residuals separated by small lags are more correlated than, say, AR(1) would imply.

Example 2

In example 1 of [XT] xtprobit, we showed a random-effects model of unionization using the union data described in [XT] xt. We performed the estimation using xtprobit but said that we could have used xtgee as well. Here we fit a population-averaged (equal correlation) model for comparison:

4

. use https://www.stata-press.com/data/r18/union (NLS Women 14-24 in 1968)

. xtgee union age grade i.not_smsa south##c.year, family(binomial) link(probit)

Iteration 1: Tolerance = .12544249 Iteration 2: Tolerance = .0034686 Iteration 3: Tolerance = .00017448 Iteration 4: Tolerance = 8.382e-06 Iteration 5: Tolerance = 3.997e-07

GEE population-averaged model Number of obs = 26,200Group variable: idcode Number of groups = 4,434

Family: Binomial Obs per group:

Link: Probit min =Correlation: exchangeable avg = 5.9

max =12 Wald chi2(6) = 242.57

Prob > chi2

= 0.0000

Scale parameter = 1

union	Coefficient	Std. err.	z	P> z	[95% conf.	interval]
age grade	.0089699	.0053208	1.69 5.34	0.092	0014586 .0210966	.0193985
1.not_smsa	0715717	.027543	-2.60	0.009	1255551	0175884
1.south	-1.017368	.207931	-4.89	0.000	-1.424905	6098308
year	0062708	.0055314	-1.13	0.257	0171122	.0045706
south#c.year						
1	.0086294	.00258	3.34	0.001	.0035727	.013686
_cons	8670997	.294771	-2.94	0.003	-1.44484	2893592

Let's look at the correlation structure and then relax it:

. estat wcorrelation, format(%8.4f)

Estimated within-idcode correlation matrix R:

	c1	c2	с3	c4	с5	с6	c7
r1 r2 r3 r4 r5 r6 r7 r8 r9	1.0000 0.4615 0.4615 0.4615 0.4615 0.4615 0.4615 0.4615	1.0000 0.4615 0.4615 0.4615 0.4615 0.4615 0.4615	1.0000 0.4615 0.4615 0.4615 0.4615 0.4615 0.4615	1.0000 0.4615 0.4615 0.4615 0.4615 0.4615	1.0000 0.4615 0.4615 0.4615 0.4615	1.0000 0.4615 0.4615 0.4615	1.0000 0.4615 0.4615 0.4615
r11 r12	0.4615 0.4615	0.4615 0.4615	0.4615 0.4615	0.4615 0.4615	0.4615 0.4615	0.4615 0.4615	0.4615 0.4615
	c8	c9	c10	c11	c12		
r8 r9 r10 r11 r12	1.0000 0.4615 0.4615 0.4615 0.4615	1.0000 0.4615 0.4615 0.4615	1.0000 0.4615 0.4615	1.0000 0.4615	1.0000		

We estimate the fixed correlation between observations within person to be 0.4615. We have many data (an average of 5.9 observations on 4,434 women), so estimating the full correlation matrix is feasible. Let's do that and then examine the results:

Prob > chi2

. xtgee union age grade i.not_smsa south##c.year, family(binomial) link(probit)

> corr(unstructured) nolog

GEE population-averaged model Number of obs Group and time vars: idcode year Number of groups = 4,434 Obs per group:

Family: Binomial Probit Link:

Correlation: unstructured

min = avg = 5.9

12 max = Wald chi2(6) = 198.45

= 0.0000

Scale parameter = 1

P> z	[95% conf.	interval]
0.070 0.000 0.001 0.000	0007984 .0224148 1502983 -1.574968	.0201208 .0481377 0358478 4820839
0.123	0200278	.0023904

			_		2/0	
age	.0096612	.0053366	1.81	0.070	0007984	.0201208
grade	.0352762	.0065621	5.38	0.000	.0224148	.0481377
1.not_smsa	093073	.0291971	-3.19	0.001	1502983	0358478
1.south	-1.028526	.278802	-3.69	0.000	-1.574968	4820839
year	0088187	.005719	-1.54	0.123	0200278	.0023904
-						
south#c.year						
1	.0089824	.0034865	2.58	0.010	.002149	.0158158
_cons	7306192	.316757	-2.31	0.021	-1.351451	109787

. estat wcorrelation, format(%8.4f)

Estimated within-idcode correlation matrix R:

union | Coefficient Std. err.

	c1	c2	c3	c4	c5	с6	c7
r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11	1.0000 0.6667 0.6151 0.5268 0.3309 0.3000 0.2995 0.2759 0.2989 0.2285 0.2325	1.0000 0.6523 0.5717 0.3669 0.3706 0.3568 0.3021 0.2981 0.2597 0.2289 0.2351	1.0000 0.6101 0.4005 0.4237 0.3851 0.3225 0.3021 0.2748 0.2696 0.2544	1.0000 0.4783 0.4562 0.4279 0.3751 0.3806 0.3637 0.3246 0.3134	1.0000 0.6426 0.4931 0.4682 0.4605 0.3981 0.3551 0.3474	1.0000 0.6384 0.5597 0.5068 0.4909 0.4426 0.3822	1.0000 0.7009 0.6090 0.5889 0.5103 0.4788
	c8	с9	c10	c11	c12		
r8 r9 r10 r11 r12	1.0000 0.6714 0.5973 0.5625 0.4999	1.0000 0.6325 0.5756 0.5412	1.0000 0.5738 0.5329	1.0000 0.6428	1.0000		

As before, we find that the correlation of residuals decreases as the lag increases, but more slowly than an AR(1) process. 1

Example 3

In this example, we examine injury incidents among 20 airlines in each of 4 years. The data are fictional, and, as a matter of fact, are really from a random-effects model.

- . use https://www.stata-press.com/data/r18/airacc
- . generate lnpm = ln(pmiles)
- . xtgee i_cnt inprog, family(poisson) eform offset(lnpm) nolog

GEE population-averaged model Number of obs 20 Group variable: airline Number of groups = 20 Family: Poisson Obs per group: Link: Log min = 4 Correlation: exchangeable avg = 4.0 max =4 Wald chi2(1) 5.27 Prob > chi2 = 0.0217Scale parameter = 1

i_cnt	IRR	Std. err.	z	P> z	[95% conf.	interval]
inprog _cons lnpm	.9059936 .0080065	.0389528 .0002912 (offset)	-2.30 -132.71	0.022 0.000	.8327758 .0074555	.9856487 .0085981

Note: _cons estimates baseline incidence rate (conditional on zero random effects).

. estat wcorrelation

Estimated within-airline correlation matrix R:

	c1	c2	c3	c4
r1	1			
r2	.4606406	1		
r3	.4606406	.4606406	1	
r4	.4606406	.4606406	.4606406	1

Now there are not really enough data here to reliably estimate the correlation without any constraints of structure, but here is what happens if we try:

. xtgee i_cnt inprog, family(poisson) eform offset(lnpm) corr(unstructured) nolog

GEE population-averaged model Number of obs Group and time vars: airline time Number of groups = 20 Family: Poisson Obs per group: Link: Log min = 4 Correlation: unstructured avg = 4.0 max = Wald chi2(1) =0.36 Scale parameter = 1 Prob > chi2 = 0.5496

i_cnt	IRR	Std. err.	z	P> z	[95% conf.	interval]
inprog _cons lnpm	.9791082 .0078716	.0345486 .0002787 (offset)		0.550 0.000	.9136826 .0073439	1.049219

Note: _cons estimates baseline incidence rate (conditional on zero random effects).

. estat wcorrelation

Estimated within-airline correlation matrix R:

	c1	c2	c3	c4
r1	1			
r2	.5700298	1		
r3	.716356	.4192126	1	
r4	.2383264	.3839863	.3521287	1

There is no sensible pattern to the correlations.

We created this dataset from a random-effects Poisson model. We reran our data-creation program and this time had it create 400 airlines rather than 20, still with 4 years of data each. Here are the equal-correlation model and estimated correlation structure:

- . use https://www.stata-press.com/data/r18/airacc2, clear
- . xtgee i_cnt inprog, family(poisson) eform offset(lnpm) nolog

GEE population-averaged model Number of obs = 1,600 Group variable: airline Number of groups = Family: Poisson Obs per group: Link: Log min = Correlation: exchangeable avg = 4.0 max = Wald chi2(1) = 111.80Scale parameter = 1 Prob > chi2 = 0.0000

i_cnt	IRR	Std. err.	z	P> z	[95% conf.	interval]
inprog _cons lnpm	.8915304 .0071357	.0096807 .0000629 (offset)		0.000	.8727571 .0070134	.9107076 .0072601

Note: _cons estimates baseline incidence rate (conditional on zero random effects).

. estat wcorrelation

Estimated within-airline correlation matrix R:

	c1	c2	c3	c4
r1	1			
r2	.5291707	1		
r3	.5291707	.5291707	1	
r4	.5291707	.5291707	.5291707	1

The following estimation results assume unstructured correlation:

. xtgee i_cnt inprog, family(poisson) corr(unstructured) eform offset(lnpm) nolog

GEE population-averaged model Number of obs Group and time vars: airline time Number of groups = 400 Family: Poisson Obs per group: Link: Log min =4 Correlation: unstructured avg = 4.0 max = 4

Wald chi2(1)
Scale parameter = 1 Prob > chi2

i_cnt	IRR	Std. err.	z	P> z	[95% conf.	interval]
inprog _cons lnpm	.8914155 .0071402		-10.65 -561.50	0.000	.8727572 .0070181	.9104728 .0072645

Note: _cons estimates baseline incidence rate (conditional on zero random effects).

. estat wcorrelation

Estimated within-airline correlation matrix R:

	c1	c2	c3	c4
r1	1			
r2	.4733189	1		
r3	.5240576	.5748868	1	
r4	.5139748	.5048895	.5840707	1

The equal-correlation model estimated a fixed correlation of 0.5292, and above we have correlations ranging between 0.4733 and 0.5841 with little pattern in their structure.

Also see

[XT] **xtgee** — GEE population-averaged panel-data models

[U] 20 Estimation and postestimation commands

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Organization of the United Nations. StataNow and NetCourseNow are trademarks of StataCorp LLC. Other brand and product names are registered trademarks or trademarks of their respective companies. Copyright © 1985–2023 StataCorp LLC, College Station, TX, USA. All rights reserved.

= 113.43

= 0.0000

For suggested citations, see the FAQ on citing Stata documentation.

4