Also see

xt — Introduction to xt commands

Description Remarks and examples References

Description

The xt series of commands provides tools for analyzing panel data (also known as longitudinal data or, in some disciplines, as cross-sectional time series when there is an explicit time component). Panel datasets have the form x_{it} , where x_{it} is a vector of observations for unit *i* and time *t*. The particular commands (such as xtdescribe, xtsum, and xtreg) are documented in alphabetical order in the entries that follow this entry. If you do not know the name of the command you need, try browsing the second part of this description section, which organizes the xt commands by topic. The next section, *Remarks and examples*, describes concepts that are common across commands.

The xtset command sets the panel variable and the time variable; see [XT] xtset. Most xt commands require that the panel variable be specified, and some require that the time variable also be specified. Once you xtset your data, you need not do it again. The xtset information is stored with your data.

If you have previously tsset your data by using both a panel and a time variable, these settings will be recognized by xtset, and you need not xtset your data.

If your interest is in general time-series analysis, see [U] **27.14 Time-series models** and the *Time-Series Reference Manual*. If your interest is in multilevel mixed-effects models, see [U] **27.16 Multilevel** mixed-effects models and the *Multilevel Mixed-Effects Reference Manual*. If you are interested in SAR (spatial autoregressive or simultaneously autoregressive) models for panel data, see [SP] spxtregress. If you are interested in extended panel-data regression models that address endogenous covariates, nonrandom treatment assignment, and endogenous sample selection, see the *Extended Regression Models Reference Manual*. If you are interested in the mixed logit choice model for panel data, see [CM] cmxtmixlogit.

Setup

xtset Declare data to be panel data

Data management and exploration tools

xtdescribe	Describe pattern of xt data
xtsum	Summarize xt data
xttab	Tabulate xt data
xtdata	Faster specification searches with xt data
xtline	Panel-data line plots

2 xt — Introduction to xt commands

Linear regression estimators

1	Eined between and and the first and a souleting second lines and the
xtreg	Fixed, between, and random-effects, and population-averaged linear models
xtregar	Fixed- and random-effects linear models with an AR(1) disturbance
xtgls	GLS linear model with heteroskedastic and correlated errors
xtpcse	Linear regression with panel-corrected standard errors
xthtaylor	Hausman-Taylor estimator for error-components models
xtfrontier	Stochastic frontier models for panel data
xtrc	Random-coefficients model
xtivreg	Instrumental variables and two-stage least squares for panel-data models
xtheckman	Random-effects regression with sample selection
xtdidregress	Fixed-effects difference in differences
xthdidregress	Heterogeneous difference in differences for panel data
xteregress	Random-effects models with endogenous covariates, treatment, and sample selection

Unit-root tests

Cointegration tests

xtcointtest Par	el-data coi	ntegration	tests
-----------------	-------------	------------	-------

Dynamic panel-data estimators

xtabond	Arellano–Bond linear dynamic panel-data estimation
xtdpd	Linear dynamic panel-data estimation
xtdpdsys	Arellano-Bover/Blundell-Bond linear dynamic panel-data estimation

Censored-outcome estimators

xttobit	Random-effects tobit models
xtintreg	Random-effects interval-data regression models
xteintreg	Random-effects interval-data regression models with endogenous covariates,
-	treatment, and sample selection

Binary-outcome estimators

xtlogit	Fixed-effects, random-effects, and population-averaged logit models
xtprobit	Random-effects and population-averaged probit models
xtcloglog	Random-effects and population-averaged cloglog models
xteprobit	Random-effects probit models with endogenous covariates, treatment, and sample selection

Ordinal-outcome estimators

xtologit	Random-effects ordered logistic models
xtoprobit	Random-effects ordered probit models
xteoprobit	Random-effects ordered probit models with endogenous covariates, treatment,
-	and sample selection

Categorical-outcome estimators

xtmlogit	Fixed-effects and random-effects multinomial logit models
cmxtmixlogit	Panel-data mixed logit choice model

Count-data estim	ators				
xtpoisson xtnbreg	Fixed-effects, random-effects, and population-averaged Poisson models Fixed-effects, random-effects, & population-averaged negative binomial models				
Survival-time esti	mators				
xtstreg	Random-effects parametric survival models				
Generalized estim	nating equations estimator				
xtgee	GEE population-averaged panel-data models				
Spatial autoregre	ssive or simultaneously autoregressive estimator				
spxtregress	Spatial autoregressive models for panel data				
Utility					
quadchk	Check sensitivity of quadrature approximation				

Remarks and examples

stata.com

Consider having data on n units—individuals, firms, countries, or whatever—over T periods. The data might be income and other characteristics of n persons surveyed each of T years, the output and costs of n firms collected over T months, or the health and behavioral characteristics of n patients collected over T years. In panel datasets, we write x_{it} for the value of x for unit i at time t. The xt commands assume that such datasets are stored as a sequence of observations on (i, t, x).

For a discussion of panel-data models, see Baltagi (2013), Greene (2018, chap. 11), Hsiao (2014), and Wooldridge (2010). Cameron and Trivedi (2022) illustrate many of Stata's panel-data estimators.

For an introduction to linear, nonlinear, and dynamic panel-data analysis in Stata, we offer NetCourse 471, Introduction to Panel Data Using Stata; see https://www.stata.com/netcourse/panel-data-intro-nc471/.

Example 1

If we had data on pulmonary function (measured by forced expiratory volume, or FEV) along with smoking behavior, age, sex, and height, a piece of the data might be

	pid	yr_visit	fev	age	sex	height	smokes
1.	1071	1991	1.21	25	1	69	0
2.	1071	1992	1.52	26	1	69	0
з.	1071	1993	1.32	28	1	68	0
4.	1072	1991	1.33	18	1	71	1
5.	1072	1992	1.18	20	1	71	1
6.	1072	1993	1.19	21	1	71	0

list	in	1/6,	separator(0)	divider
		_, _,	Doparator (0)	

The xt commands need to know the identity of the variable identifying patient, and some of the xt commands also need to know the identity of the variable identifying time. With these data, we would type

. xtset pid yr_visit

If we resaved the data, we need not respecify xtset.

Technical note

Panel data stored as shown above are said to be in the long form. Perhaps the data are in the wide form with 1 observation per unit and multiple variables for the value in each year. For instance, a piece of the pulmonary function data might be

pid	sex	fev91	fev92	fev93	age91	age92	age93
1071	1	1.21	1.52	1.32	25	26	28
1072	1	1.33	1.18	1.19	18	20	21

Data in this form can be converted to the long form by using reshape; see [D] reshape.

▷ Example 2

Data for some of the periods might be missing. That is, we have panel data on i = 1, ..., nand t = 1, ..., T, but only T_i of those observations are defined. With such missing periods—called unbalanced data—a piece of our pulmonary function data might be

pid	yr_visit	fev	age	sex	height	smokes
1071	1991	1.21	25	1	69	0
1071	1992	1.52	26	1	69	0
1071	1993	1.32	28	1	68	0
1072	1991	1.33	18	1	71	1
1072	1993	1.19	21	1	71	0
1073	1991	1.47	24	0	64	0
	pid 1071 1071 1071 1072 1072 1073	pidyr_visit107119911071199210711993107219911072199310731991	pid yr_visit fev 1071 1991 1.21 1071 1992 1.52 1071 1993 1.32 1072 1991 1.33 1072 1993 1.19 1073 1991 1.47	pidyr_visitfevage107119911.2125107119921.5226107119931.3228107219911.3318107219931.1921107319911.4724	pid yr_visit fev age sex 1071 1991 1.21 25 1 1071 1992 1.52 26 1 1071 1993 1.32 28 1 1072 1991 1.33 18 1 1072 1993 1.19 21 1 1073 1991 1.47 24 0	pid yr_visit fev age sex height 1071 1991 1.21 25 1 69 1071 1992 1.52 26 1 69 1071 1993 1.32 28 1 68 1072 1991 1.33 18 1 71 1072 1993 1.19 21 1 71 1073 1991 1.47 24 0 64

. list in 1/6, separator(0) divider

Patient ID 1072 is not observed in 1992. The xt commands are robust to this problem.

4

□ Technical note

In many of the entries in [XT], we will use data from a subsample of the NLSY data (Center for Human Resource Research 1989) on young women aged 14–24 years in 1968. Women were surveyed in each of the 21 years 1968–1988, except for the six years 1974, 1976, 1979, 1981, 1984, and 1986. We use two different subsets: nlswork.dta and union.dta.

For nlswork.dta, our subsample is of 4,711 women in years when employed, not enrolled in school and evidently having completed their education, and with wages in excess of \$1/hour but less than \$700/hour.

4

. use https: (National Lo	://www.stata ongitudinal	a-press.com Survey of	/data/r18/n Young Women	lswork, clear , 14-24 years old in 1968)
. describe				
Contains dat Observation	ta from http ns: 2	os://www.st 28,534	ata-press.c	om/data/r18/nlswork.dta National Longitudinal Survey of Young Women, 14-24 years old in 1968
Variable	es:	21		27 Nov 2022 08:14 (_dta has notes)
Variable name	Storage type	Display format	Value label	Variable label
<pre>idcode year birth_yr age race msp nev_mar grade collgrad not_smsa c_city south ind_code occ_code union wks_ue ttl_exp tenure</pre>	<pre>int byte byte byte byte byte byte byte byt</pre>	<pre>%8.0g %8.0g %</pre>	racelbl	NLS ID Interview year Birth year Age in current year Race 1 if married, spouse present 1 if never married Current grade completed 1 if college graduate 1 if worth 1 if union Weeks unemployed last year Total work experience Job tenure, in years
hours wks_work ln_wage	int int float	%8.0g %8.0g %9.0g		Usual hours worked Weeks worked last year ln(wage/GNP deflator)

Sorted by: idcode year

					. summarize
Max	Min	Std. dev.	Mean	Obs	Variable
5159	1	1487.359	2601.284	28,534	idcode
88	68	6.383879	77.95865	28,534	year
54	41	3.012837	48.08509	28,534	birth_yr
46	14	6.700584	29.04511	28,510	age
3	1	.4822773	1.303392	28,534	race
1	0	.4893019	.6029175	28,518	msp
1	0	.4206341	.2296795	28,518	nev_mar
18	0	2.323905	12.53259	28,532	grade
1	0	.3739129	.1680451	28,534	collgrad
1	0	.4501961	.2824441	28,526	not_smsa
1	0	.4791882	.357218	28,526	c_city
1	0	.4917605	.4095562	28,526	south
12	1	2.994025	7.692973	28,193	ind_code
13	1	3.065435	4.777672	28,413	occ_code
1	0	.4236542	.2344319	19,238	union
76	0	7.294463	2.548095	22,830	wks_ue
28.88461	0	4.652117	6.215316	28,534	ttl_exp
25.91667	0	3.751409	3.123836	28,101	tenure
168	1	9.869623	36.55956	28,467	hours
104	0	29.03232	53.98933	27,831	wks_work
5.263916	0	.4780935	1.674907	28,534	ln_wage

Many of the variables in the nlswork dataset are indicator variables, so we have used factor variables (see [U] **11.4.3 Factor variables**) in many of the examples in this manual. You will see terms like c.age#c.age or 2.race in estimation commands. c.age#c.age is just age interacted with age, or age-squared, and 2.race is just an indicator variable for black (race = 2).

Instead of using factor variables, you could type

```
. generate age2 = age*age
. generate black = (race==2)
```

and substitute age2 and black in your estimation command for c.age#c.age and 2.race, respectively.

There are advantages, however, to using factor variables. First, you do not actually have to create new variables, so the number of variables in your dataset is less.

Second, by using factor variables, we are able to take better advantage of postestimation commands. For example, if we specify the simple model

. xtreg ln_wage age age2, fe

then age and age2 are completely separate variables. Stata has no idea that they are related—that one is the square of the other. Consequently, if we compute the average marginal effect of age on the log of wages,

. margins, dydx(age)

then the reported marginal effect is with respect to the age variable alone and not with respect to the true effect of age, which involves the coefficients on both age and age2.

If instead we fit our model using an interaction of age with itself for the square of age,

. xtreg ln_wage age c.age#c.age, fe

then Stata has a deep understanding that the coefficients age and c.age#c.age are related. After fitting this model, the marginal effect reported by margins includes the full effect of age on the log of income, including the contribution of both coefficients.

. margins, dydx(age)

There are other reasons for preferring factor variables; see [R] margins for examples.

For union.dta, our subset was sampled only from those with union membership information from 1970 to 1988. Our subsample is of 4,434 women. The important variables are age (16-46), grade (years of schooling completed, ranging from 0 to 18), not_smsa (28% of the person-time was spent living outside a standard metropolitan statistical area (SMSA), and south (41% of the person-time was in the South). The dataset also has variable union. Overall, 22% of the person-time is marked as time under union membership, and 44% of these women have belonged to a union.

```
use https://www.stata-press.com/data/r18/union
(NLS Women 14-24 in 1968)
. describe
Contains data from https://www.stata-press.com/data/r18/union.dta
                       26,200
 Observations:
                                                  NLS Women 14-24 in 1968
    Variables:
                             8
                                                  4 May 2022 13:54
                                                  (_dta has notes)
Variable
               Storage
                          Display
                                      Value
                           format
                                      label
    name
                  type
                                                  Variable label
                          %8.0g
                                                  NLS ID
idcode
                 int
                 byte
                          %8.0g
year
                                                  Interview year
                 byte
                          %8.0g
                                                  Age in current year
age
                 byte
                          %8.0g
                                                  Current grade completed
grade
not_smsa
                 byte
                          %8.0g
                                                  1 if not SMSA
south
                          %8.0g
                                                  1 if south
                 byte
union
                                                  1 if union
                 byte
                          %8.0g
black
                 byte
                          %8.0g
                                                  Race black
Sorted by: idcode year
. summarize
    Variable
                       Obs
                                            Std. dev.
                                                             Min
                                   Mean
                                                                         Max
      idcode
                    26,200
                               2611.582
                                            1484.994
                                                                1
                                                                        5159
                                                                          88
                    26,200
                               79.47137
                                            5.965499
                                                               70
         year
                    26,200
                                                                           46
         age
                               30.43221
                                            6.489056
                                                               16
                    26,200
                               12.76145
                                            2.411715
                                                                0
                                                                           18
       grade
                    26,200
                               .2837023
                                             .4508027
                                                                0
                                                                           1
    not_smsa
                                                                0
                                                                           1
                    26,200
                                             .4923849
       south
                               .4130153
       union
                    26,200
                               .2217939
                                            .4154611
                                                                0
                                                                            1
                    26,200
                                .274542
                                            .4462917
                                                                0
                                                                            1
       black
```

In many of the examples where the union dataset is used, we also include an interaction between the year variable and the south variable—south#c.year. This interaction is created using factor-variables notation; see [U] 11.4.3 Factor variables.

With both datasets, we have typed

. xtset idcode year

Technical note

The xtset command sets the t and i index for xt data by declaring them as characteristics of the data; see [P] char. The panel variable is stored in _dta[iis] and the time variable is stored in _dta[tis].

Technical note

Throughout the entries in [XT], when random-effects models are fit, a likelihood-ratio test that the variance of the random effects is zero is included. These tests occur on the boundary of the parameter space, invalidating the usual theory associated with such tests. However, these likelihood-ratio tests have been modified to be valid on the boundary. In particular, the null distribution of the likelihood-ratio test statistic is not the usual χ_1^2 but is rather a 50:50 mixture of a χ_0^2 (point mass at zero) and a χ_1^2 , denoted as $\overline{\chi}_{01}^2$. See Gutierrez, Carter, and Drukker (2001) for a full discussion.

References

- Andreß, H.-J., K. Golsch, and A. W. Schmidt. 2013. Applied Panel Data Analysis for Economic and Social Surveys. Berlin: Springer.
- Baltagi, B. H. 2013. Econometric Analysis of Panel Data. 5th ed. Chichester, UK: Wiley.
- Cameron, A. C., and P. K. Trivedi. 2022. Microeconometrics Using Stata. 2nd ed. College Station, TX: Stata Press.
- Center for Human Resource Research. 1989. National Longitudinal Survey of Labor Market Experience, Young Women 14–24 years of age in 1968. Columbus, OH: Ohio State University Press.
- Frees, E. W. 2004. Longitudinal and Panel Data: Analysis and Applications in the Social Sciences. Cambridge: Cambridge University Press.
- Greene, W. H. 2018. Econometric Analysis. 8th ed. New York: Pearson.
- Gutierrez, R. G., S. L. Carter, and D. M. Drukker. 2001. sg160: On boundary-value likelihood-ratio tests. Stata Technical Bulletin 60: 15–18. Reprinted in Stata Technical Bulletin Reprints, vol. 10, pp. 269–273. College Station, TX: Stata Press.
- Hsiao, C. 2014. Analysis of Panel Data. 3rd ed. New York: Cambridge University Press.

Sun, Y., and G. Dhaene. 2019. xtspj: A command for split-panel jackknife estimation. Stata Journal 19: 335–374.

Wooldridge, J. M. 2010. Econometric Analysis of Cross Section and Panel Data. 2nd ed. Cambridge, MA: MIT Press.

Also see

[XT] **xtset** — Declare data to be panel data

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Organization of the United Nations. StataNow and NetCourseNow are trademarks of StataCorp LLC. Other brand and product names are registered trademarks or trademarks of their respective companies. Copyright © 1985–2023 StataCorp LLC, College Station, TX, USA. All rights reserved.

For suggested citations, see the FAQ on citing Stata documentation.