Description	Quick start	Menu	Syntax
Options	Remarks and examples		

Description

quadchk checks the quadrature approximation used in the random-effects estimators of the following commands:

```
xtcloglog
xtintreg
xtlogit
xtmlogit
xtologit
xtoprobit
xtpoisson, re with the normal option
xtprobit
xtstreg
xttobit
```

quadchk refits the model for different numbers of quadrature points and then compares the different solutions. quadchk respects all options supplied to the original model except or, vce(), and the maximize_options.

Quick start

Check quadrature approximation using the default range of quadrature points quadchk

Same as above, but use 8 and 16 quadrature points
quadchk 816
Same as above, but suppress the iteration \log and output of the refitted models quadchk 8 16, nooutput

Refit the model instead of using original estimates
quadchk 816 , nooutput nofrom

Menu

Statistics $>$ Longitudinal/panel data $>$ Setup and utilities $>$ Check sensitivity of quadrature approximation

Syntax

```
quadchk [## # # ] [, nooutput nofrom]
```

$\#_{1}$ and $\#_{2}$ specify the number of quadrature points to use in the comparison runs of the previous model. The default is to use approximately $2 n_{q} / 3$ and $4 n_{q} / 3$ points, where n_{q} is the number of quadrature points used in the original estimation.

Options

nooutput suppresses the iteration \log and output of the refitted models.
nofrom forces the refitted models to start from scratch rather than starting from the previous estimation results. Specifying the nofrom option can level the playing field in testing estimation results.

Remarks and examples

stata.com
Remarks are presented under the following headings:
What makes a good random-effects model fit?
How do I know whether I have a good quadrature approximation?
What can I do to improve my results?

What makes a good random-effects model fit?

Some random-effects estimators in Stata use adaptive or nonadaptive Gauss-Hermite quadrature to compute the log likelihood and its derivatives. As a rule, adaptive quadrature, which is the default integration method, is much more accurate. The quadchk command provides a means to look at the numerical accuracy of either quadrature approximation. A good random-effects model fit depends on both the goodness of the quadrature approximation and the goodness of the data.

The accuracy of the quadrature approximation depends on three factors. The first and second are how many quadrature points are used and where the quadrature points fall. These two factors directly influence the accuracy of the quadrature approximation. The number of quadrature points may be specified with the intpoints() option. However, once the number of points is specified, their abscissas (locations) and corresponding weights are completely determined. Increasing the number of points expands the range of the abscissas and, to a lesser extent, increases the density of the abscissas. For this reason, a function that undulates between the abscissas can be difficult to approximate.

Third, the smoothness of the function being approximated influences the accuracy of the quadrature approximation. Gauss-Hermite quadrature estimates integrals of the type

$$
\int_{-\infty}^{\infty} e^{-x^{2}} f(x) d x
$$

and the approximation is exact if $f(x)$ is a polynomial of degree less than the number of integration points. Therefore, $f(x)$ that are well approximated by polynomials of a given degree have integrals that are well approximated by Gauss-Hermite quadrature with that given number of integration points. Both large panel sizes and high ρ can reduce the accuracy of the quadrature approximation.

A final factor affects the goodness of the random-effects model: the data themselves. For high ρ, for example, there is high intrapanel correlation, and panels look like observations. The model becomes unidentified. Here, even with exact quadrature, fitting the model would be difficult.

How do I know whether I have a good quadrature approximation?

quadchk is intended as a tool to help you know whether you have a good quadrature approximation. As a rule of thumb, if the coefficients do not change by more than a relative difference of 10^{-4} (0.01%), the choice of quadrature points does not significantly affect the outcome, and the results may be confidently interpreted. However, if the results do change appreciably-greater than a relative difference of $10^{-2}(1 \%)$-then quadrature is not reliably approximating the likelihood.

What can I do to improve my results?

If the quadchk command indicates that the estimation results are sensitive to the number of quadrature points, there are several things you can do. First, if you are not using adaptive quadrature, switch to adaptive quadrature.

Adaptive quadrature can improve the approximation by transforming the integrand so that the abscissas and weights sample the function on a more suitable range. Details of this transformation are in Methods and formulas for the given commands; for example, see [XT] xtprobit.

If the model still shows sensitivity to the number of quadrature points, increase the number of quadrature points with the intpoints() option. This option will increase the range and density of the sampling used for the quadrature approximation.

If neither of these works, you may then want to consider an alternative model, such as a fixedeffects, pooled, or population-averaged model. Alternatively, a different random-effects model whose likelihood is not approximated via quadrature (for example, xtpoisson, re) may be a better choice.
$>$ Example 1
Here we synthesize data according to the model

$$
\begin{aligned}
& E(y)=0.05 x_{1}+0.08 x_{2}+0.08 x_{3}+0.1 x_{4}+0.1 x_{5}+0.1 x_{6}+0.1 \epsilon \\
& z= \begin{cases}1 & \text { if } y \geq 0 \\
0 & \text { if } y<0\end{cases}
\end{aligned}
$$

where the intrapanel correlation is 0.5 and the x 1 variable is constant within panels. We first fit a random-effects probit model, and then we check the stability of the quadrature calculation:
. use https://www.stata-press.com/data/r18/quad1
. xtset id
Panel variable: id (balanced)
. xtprobit z x1-x6
(output omitted)
Random-effects probit regression
Number of obs $=6,000$
Group variable: id
Random effects u_i ~ Gaussian
Obs per group:

\min	$=$	20
avg	$=$	20.0
\max	$=$	20
pts.	$=$	12
	$=$	29.24
	$=0.0001$	

z	Coefficient	Std. err.	z	$\mathrm{P}>\|\mathrm{z}\|$	[95\% conf. interval]	
x1	.0043068	.0607058	0.07	0.943	-.1146743	.1232879
x2	.1000742	.066331	1.51	0.131	-.0299323	.2300806
x3	.1503539	.0662503	2.27	0.023	.0205057	.2802021
x4	.123015	.0377089	3.26	0.001	.0491069	.196923
x5	.1342988	.0657222	2.04	0.041	.0054856	.263112
x6	.0879933	.0455753	1.93	0.054	-.0013325	.1773192
_cons	.0757067	.060359	1.25	0.210	-.0425948	.1940083
/lnsig2u	-.0329916	.1026847			-.23425	.1682667
sigma_u	.9836395	.0505024			.889474	1.087774
rho	.4917528	.0256642			.4417038	.5419677

LR test of rho=0: chibar2(01) $=1582.67$
Prob >= chibar2 $=0.000$

```Refitting model intpoints() = 8 (output omitted) Refitting model intpoints() = 16 (output omitted)```				
Quadrature check				
	Fitted quadrature 12 points	Comparison quadrature 8 points	Comparison quadrature 16 points	
Log	-3347.1097	-3347.1153	-3347.1099	
likelihood		-. 00561484	-. 00014288	Difference
		$1.678 \mathrm{e}-06$	$4.269 \mathrm{e}-08$	Relative difference
z:	. 0043068	. 0043068	. 00430541	
x1		$8.983 \mathrm{e}-15$	-1.388e-06	Difference
		$2.086 \mathrm{e}-12$	-. 00032222	Relative difference
z:	. 10007418	. 10007418	. 10007431	
x2		$2.540 \mathrm{e}-15$	$1.362 \mathrm{e}-07$	Difference
		$2.538 \mathrm{e}-14$	$1.361 \mathrm{e}-06$	Relative difference
z:	. 15035391	. 15035391	. 15035406	
x3		$6.356 \mathrm{e}-15$	$1.520 \mathrm{e}-07$	Difference
		$4.227 \mathrm{e}-14$	$1.011 \mathrm{e}-06$	Relative difference
z:	. 12301495	. 12301495	. 12301506	
x4		$4.149 \mathrm{e}-15$	$1.099 \mathrm{e}-07$	Difference
		$3.373 \mathrm{e}-14$	$8.931 \mathrm{e}-07$	Relative difference
z:	. 13429881	. 13429881	. 13429896	
x5		$4.913 \mathrm{e}-15$	$1.471 \mathrm{e}-07$	Difference
		$3.658 \mathrm{e}-14$	$1.096 \mathrm{e}-06$	Relative difference
z:	. 08799332	. 08799332	. 08799346	
x6		$3.345 \mathrm{e}-15$	$1.363 \mathrm{e}-07$	Difference
		3.801e-14	$1.549 \mathrm{e}-06$	Relative difference
z:	. 07570675	. 07570675	. 07570423	
_cons		$1.964 \mathrm{e}-14$	-2.516e-06	Difference
		$2.594 \mathrm{e}-13$	-. 00003323	Relative difference
$\begin{aligned} & \text { /: } \\ & \text { lnsig2u } \end{aligned}$	-. 03299164	-. 03299164	-. 03298184	
		$7.268 \mathrm{e}-14$	$9.798 \mathrm{e}-06$	Difference
		-2.203e-12	-. 00029699	Relative difference

We see that the largest difference is in the x1 variable with a relative difference of $0.03 \%$ between the model with 12 integration points and 16 . This example is somewhat rare in that the differences between eight quadrature points and 12 are smaller than those between 12 and 16 . Usually the opposite occurs: the model results converge as you add quadrature points. Here we have an indication that perhaps some minor feature of the model was missed with eight points and 12 but seen with 16. Because all differences are very small, we could accept this model as is. We would like to have a largest relative difference of about $0.01 \%$, and this is close. The differences and relative differences are small, indicating that refitting the random-effects probit model with a few more integration points will yield a satisfactory result. Indeed, refitting the model with the intpoints (20) option yields completely satisfactory results when checked with quadchk.

Nonadaptive Gauss-Hermite quadrature does not yield such robust results.

Random-effects probit regression Group variable: id				Number of obs $=6,000$		
Random effects u_i ~ Gaussian					Obs per group:	
					min	20
					avg	20.0
					ma	20
Integration method: ghermite					Integration pts. $=12$	
					d chi2(6)	$=36.15$
Log likelihood $=-3349.6926$				Prob > chi2 $=0.0000$		
z	Coefficient	Std. err.	z	$P>\|z\|$	[95\% conf.	interval]
x1	. 1156763	. 0554925	2.08	0.037	. 0069131	. 2244396
x2	. 1005555	. 066227	1.52	0.129	-. 0292469	. 230358
x3	. 1542187	. 0660852	2.33	0.020	. 0246941	. 2837433
x 4	. 1257616	. 0375776	3.35	0.001	. 0521108	. 1994123
x5	. 1366003	. 0654696	2.09	0.037	. 0082823	. 2649182
x6	. 0870325	. 0453489	1.92	0.055	-. 0018497	. 1759147
_cons	. 1098393	. 0500514	2.19	0.028	. 0117404	. 2079382
/lnsig2u	-. 0791821	. 0971063			-. 2695071	. 1111428
sigma_u	. 9611824	. 0466685			. 8739313	1.057145
rho	. 4802148	. 0242386			. 4330281	. 5277571


$\begin{aligned} & \text { Refitting model intpoints }()=8 \\ & \text { Refitting model intpoints }()=16 \end{aligned}$				
Quadrature check				
	Fitted quadrature 12 points	Comparison quadrature 8 points	Comparison quadrature 16 points	
Log	-3349.6926	-3354.6372	-3348.3881	
likelihood		-4.9446636	1.3045063	Difference
		. 00147615	-. 00038944	Relative difference
z :	. 11567633	. 16153998	. 07007833	
x1		. 04586365	-. 045598	Difference
		. 39648262	-. 39418608	Relative difference
$z$ :	. 10055552	. 10317831	. 09937417	
x 2		. 00262279	-. 00118135	Difference
		. 02608297	-. 01174825	Relative difference
$z$ :	. 1542187	. 15465369	. 15150516	
x3		. 00043499	-. 00271354	Difference
		. 00282062	-. 0175954	Relative difference
z :	. 12576159	. 12880254	. 1243974	
x4		. 00304096	-. 00136418	Difference
		. 02418032	-. 01084739	Relative difference
z :	. 13660028	. 13475211	. 13707075	
x5		-. 00184817	. 00047047	Difference
		-. 01352978	. 00344411	Relative difference
z:	. 08703252	. 08568342	. 08738135	
x6		-. 0013491	. 00034883	Difference
		-. 0155011	. 00400809	Relative difference
z:	. 10983928	. 11031299	. 09654975	
_cons		. 00047371	-. 01328953	Difference
		. 00431274	-. 12099067	Relative difference
$\begin{aligned} & \text { /: } \\ & \text { lnsig2u } \end{aligned}$	-. 07918212	-. 18133821	-. 05815644	
		-. 10215609	. 02102568	Difference
		1.2901408	-. 26553572	Relative difference

Here we see that the x 1 variable (the one that was constant within panel) changed with a relative difference of nearly $40 \%$ ! This example clearly demonstrates the benefit of adaptive quadrature methods.

## > Example 2

Here we rerun the previous nonadaptive quadrature model, but using the intpoints (120) option to increase the number of integration points to 120 . We get results close to those from adaptive quadrature and an acceptable quadchk. This example demonstrates the efficacy of increasing the number of integration points to improve the quadrature approximation.


z	Coefficient	Std. err.	z	$\mathrm{P}>\|\mathrm{z}\|$	[95\% conf. interval]	
x1	.0043059	.0607087	0.07	0.943	-.114681	.1232929
x 2	.1000743	.0663311	1.51	0.131	-.0299322	.2300808
x 3	.1503541	.0662503	2.27	0.023	.0205058	.2802023
x 4	.1230151	.0377089	3.26	0.001	.049107	.1969232
x 5	.134299	.0657223	2.04	0.041	.0054856	.2631123
x 6	.0879935	.0455753	1.93	0.054	-.0013325	.1773194
_cons	.0757054	.0603621	1.25	0.210	-.0426021	.1940128
/lnsig2u	-.0329832	.1026863			-.2342446	.1682783
sigma_u	.9836437	.0505034			.8894764	1.08778
rho	.491755	.0256646			.4417052	.5419706
LR test of rho=0: chibar2(01) $=1582.67$			Prob $>=$ chibar2 $=0.000$			


$\begin{aligned} & \text { Refitting model intpoints }()=80 \\ & \text { Refitting model intpoints() }=160 \end{aligned}$				
Quadrature check				
	Fitted quadrature 120 points	Comparison quadrature 80 points	Comparison quadrature 160 points	
Log	-3347.1099	-3347.1099	-3347.1099	
likelihood		-. 00007138	$2.440 \mathrm{e}-07$	Difference
		$2.133 \mathrm{e}-08$	-7.289e-11	Relative difference
$z$ :	. 00430592	. 00431318	. 00430553	
x1		$7.259 \mathrm{e}-06$	-3.871e-07	Difference
		. 00168592	-. 00008991	Relative difference
z:	. 10007431	. 10007415	. 10007431	
x 2		-1.519e-07	$5.585 \mathrm{e}-09$	Difference
		-1.517e-06	$5.580 \mathrm{e}-08$	Relative difference
z:	. 15035406	. 15035407	. 15035406	
x3		$1.699 \mathrm{e}-08$	$7.636 \mathrm{e}-09$	Difference
		$1.130 \mathrm{e}-07$	$5.078 \mathrm{e}-08$	Relative difference
$z$ :	. 12301506	. 12301512	. 12301506	
x4		6.036e-08	$5.353 \mathrm{e}-09$	Difference
		$4.907 \mathrm{e}-07$	$4.352 \mathrm{e}-08$	Relative difference
z:	. 13429895	. 13429962	. 13429896	
x5		6.646e-07	$4.785 \mathrm{e}-09$	Difference
		$4.949 \mathrm{e}-06$	$3.563 \mathrm{e}-08$	Relative difference
z:	. 08799345	. 08799334	. 08799346	
x6		-1.123e-07	3.049e-09	Difference
		-1.276e-06	$3.465 \mathrm{e}-08$	Relative difference
z:	. 07570536	. 07570205	. 07570442	
_cons		-3.305e-06	-9.405e-07	Difference
		-. 00004365	-. 00001242	Relative difference
/:	-. 03298317	-. 03298909	-. 03298186	
lnsig2u		-5.919e-06	$1.304 \mathrm{e}-06$	Difference
		. 00017945	-. 00003952	Relative difference

## Example 3

Here we synthesize data the same way as in the previous example, but we make the intrapanel correlation equal to 0.1 instead of 0.5 . We again fit a random-effects probit model and check the quadrature:
. use https://www.stata-press.com/data/r18/quad2
. xtset id
Panel variable: id (balanced)
. xtprobit z x1-x6
Fitting comparison model:

Iteration 0: Log likelihood $=-4142.2915$		
Iteration 1: Log likelihood $=-4120.4109$		
Iteration 2: Log likelihood $=-4120.4099$		
Iteration 3: Log likelihood $=-4120.4099$		
Fitting full model:		
rho $=0.0 \quad$ Log likelihood $=-4120.4099$		
rho $=0.1$ Log likelihood $=-4065.7986$		
rho $=0.2 \quad$ Log likelihood $=-4087.7703$		
Iteration 0: Log likelihood $=-4065.7986$		
Iteration 1: Log likelihood $=-4065.3157$		
Iteration 2: Log likelihood $=-4065.3144$		
Iteration 3: Log likelihood $=-4065.3144$		
Random-effects probit regression	Number of obs	$=6,000$
Group variable: id	Number of groups	300
Random effects u_i ~ Gaussian	Obs per group:	
	min	20
	avg	20.0
	max	20
Integration method: mvaghermite	Integration pts.	12
	Wald chi2(6)	39.43
Log likelihood $=-4065.3144$	Prob > chi2	$=0.0000$


$z$	Coefficient	Std. err.	z	$\mathrm{P}>\mid \mathrm{zl}$	[95\% conf. interval]	
x1	.0246943	.025112	0.98	0.325	-.0245243	.0739129
x2	.1300123	.0587906	2.21	0.027	.0147847	.2452398
x3	.1190409	.0579539	2.05	0.040	.0054533	.2326284
x4	.139197	.0331817	4.19	0.000	.0741621	.2042319
x5	.077364	.0578454	1.34	0.181	-.036011	.1907389
x6	.0862028	.0401185	2.15	0.032	.007572	.1648336
_cons	.0922653	.0244392	3.78	0.000	.0443653	.1401652
/lnsig2u	-2.343939	.1575275			-2.652687	-2.035191
sigma_u	.3097563	.0243976			.2654461	.3614631
rho	.0875487	.0125839			.0658236	.1155574

LR test of rho=0: chibar2(01) = 110.19
Prob >= chibar2 $=0.000$

$\begin{array}{lr} \text { Refitting model intpoints }()=8 \\ \text { Refitting model intpoints }()=16 \end{array}$				
Quadrature check				
	Fitted quadrature 12 points	Comparison quadrature   8 points	Comparison quadrature 16 points	
Log	-4065.3144	-4065.3144	-4065.3144	
likelihood		-2.268e-08	$6.366 \mathrm{e}-12$	Difference
		$5.578 \mathrm{e}-12$	-1.566e-15	Relative difference
z:	. 02469427	. 02469427	. 02469427	
x1		-7.290e-12	-8.007e-12	Difference
		-2.952e-10	-3.242e-10	Relative difference
z:	. 13001229	. 13001229	. 13001229	
x2		-3.131e-11	-6.880e-13	Difference
		-2.408e-10	-5.292e-12	Relative difference
z:	. 11904089	. 11904089	. 11904089	
x3		-1.291e-11	-3.030e-13	Difference
		-1.085e-10	-2.546e-12	Relative difference
z:	. 13919697	. 13919697	. 13919697	
x4		$2.885 \mathrm{e}-12$	$1.693 \mathrm{e}-13$	Difference
		$2.072 \mathrm{e}-11$	$1.216 \mathrm{e}-12$	Relative difference
z:	. 07736398	. 07736398	. 07736398	
x5		-1.160e-11	-4.557e-13	Difference
		-1.500e-10	-5.890e-12	Relative difference
z:	. 08620282	. 08620282	. 08620282	
x6		$1.181 \mathrm{e}-11$	$3.191 \mathrm{e}-13$	Difference
		$1.370 \mathrm{e}-10$	$3.702 \mathrm{e}-12$	Relative difference
z:	. 09226527	. 09226527	. 09226527	
_cons		-5.700e-12	-1.837e-11	Difference
		-6.177e-11	-1.991e-10	Relative difference
/:	-2.3439389	-2.3439389	-2.3439389	
lnsig2u		-5.892e-09	-2.172e-10	Difference
		$2.514 \mathrm{e}-09$	$9.267 e-11$	Relative difference

Here we see that the quadrature approximation is stable. With this result, we can confidently interpret the results. Satisfactory results are also obtained in this case with nonadaptive quadrature.

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Organization of the United Nations. StataNow and NetCourseNow are trademarks of StataCorp LLC. Other brand and product names are registered trademarks or trademarks of their respective companies. Copyright (c) 1985-2023 StataCorp LLC, College Station, TX,
 USA. All rights reserved.

For suggested citations, see the FAQ on citing Stata documentation.

