Title

tsappend — Add observations to a time-series dataset

DescriptionQuick startMenuSyntaxOptionsRemarks and examplesStored resultsAlso see

Description

tsappend appends observations to a time-series dataset or to a panel dataset. tsappend uses and updates the information set by tsset or xtset. Any gaps in the dataset are removed.

Quick start

Add 10 time periods to tsset data tsappend, add(10)

Incorporate additional months to data up to the third month of 1999
tsappend, last(1999m3) tsfmt(tm)

Add 2 time periods to the panel identified by pvar = 333 after xtset pvar tvar tsappend, add(2) panel(333)

Menu

Statistics > Time series > Setup and utilities > Add observations to time-series dataset

Syntax

tsappend, {	add(#)	last(<i>date</i>	clock)	tsfmt(<i>string</i>)	}	options	
-------------	--------	-------------------	--------	------------------------	---	---------	--

options	Description
* add(#)	add # observations
*last(<i>date</i> <i>clock</i>)	add observations at <i>date</i> or <i>clock</i>
*tsfmt(<i>string</i>)	use time-series function <i>string</i> with last(<i>date</i> <i>clock</i>)
<pre>panel(panel_id)</pre>	add observations to panel panel_id

* Either add(#) is required, or last(date | clock) and tsfmt(string) are required.

You must tsset or xtset your data before using tsappend; see [TS] tsset and [XT] xtset. collect is allowed; see [U] 11.1.10 Prefix commands.

Options

add(#) specifies the number of observations to add.

last(date | clock) and tsfmt(string) must be specified together and are an alternative to add().

last(*date* | *clock*) specifies the date or the date and time of the last observation to add.

tsfmt(*string*) specifies the name of the Stata time-series function to use in converting the date specified in last() to an integer. The function names are tc (clock), tC (Clock), td (daily), tw (weekly), tm (monthly), tq (quarterly), and th (half-yearly).

For clock times, the last time added (if any) will be earlier than the time requested in last(*date* | *clock*) if last() is not a multiple of delta units from the last time in the data.

For instance, you might specify last(17may2007) tsfmt(td), last(2001m1) tsfmt(tm), or last(17may2007 15:30:00) tsfmt(tc).

panel(panel_id) specifies that observations be added only to panels with the ID specified in panel().

Remarks and examples

stata.com

Remarks are presented under the following headings:

Introduction Using tsappend with time-series data Using tsappend with panel data

Introduction

tsappend adds observations to a time-series dataset or to a panel dataset. You must tsset or xtset your data before using tsappend. tsappend simultaneously removes any gaps from the dataset.

There are two ways to use tsappend: you can specify the add(#) option to request that # observations be added, or you can specify the last(*date* | *clock*) option to request that observations be appended until the date specified is reached. If you specify last(), you must also specify tsfmt(). tsfmt() specifies the Stata time-series date function that converts the date held in last() to an integer.

tsappend works with time series of panel data. With panel data, tsappend adds the requested observations to all the panels, unless the panel() option is also specified.

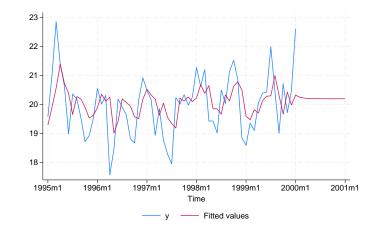
Using tsappend with time-series data

tsappend can be useful for appending observations when dynamically predicting a time series. Consider an example in which tsappend adds the extra observations before dynamically predicting from an AR(1) regression:

. regress y 1.	у					
Source	SS	df	MS	Number of	obs =	479
				F(1, 477)	=	119.29
Model	115.349555	1	115.349555	Prob > F	=	0.0000
Residual	461.241577	477	.966963473	R-squared	l =	0.2001
				Adj R-squ	ared =	0.1984
Total	576.591132	478	1.2062576	Root MSE	=	.98334
У	Coefficient	Std. err.	t	P> t [9	95% conf.	interval]
y L1.	.4493507	.0411417	10.92	0.000 .3	8685093	.5301921
_cons	11.11877	.8314581	13.37	0.000 9.	484993	12.75254

. use https://www.stata-press.com/data/r18/tsappend1

```
. matrix b = e(b)
```


```
. matrix colnames b = L.xb one
. tsset
Time variable: t2, 1960m2 to 2000m1
        Delta: 1 month
. tsappend, add(12)
. tsset
Time variable: t2, 1960m2 to 2001m1
        Delta: 1 month
. predict xb if t2<=tm(2000m2)
(option xb assumed; fitted values)
(12 missing values generated)
. generate one=1
. matrix score xb=b if t2>=tm(2000m2), replace
```

The calls to tsset before and after tsappend were made without a time variable; thus both commands display how the data are currently tsset. The results from the first tsset command show that we have monthly data and that our time variable, t2, starts at 1960m2 and ends at 2000m1.

tsappend with the add(12) option used these results to add 12 months to the dataset. The results of the second tsset command show that this new year of data has been added, as shown by the end year now being 2001m1. We could have skipped these calls to tsset, but they are shown here to illustrate how tsappend uses and updates time-series settings of the dataset.

We then used predict and matrix score to obtain the dynamic predictions, which allows us to produce the following graph:

. tsline y xb if t2>=tm(1995m1), ytitle("") xtitle("Time")

In the call to tsappend, instead of saying that we wanted to add 12 observations, we could have specified that we wanted to fill in observations through the first month of 2001:

```
. use https://www.stata-press.com/data/r18/tsappend1, clear
. tsset
Time variable: t2, 1960m2 to 2000m1
        Delta: 1 month
. tsappend, last(2001m1) tsfmt(tm)
. tsset
Time variable: t2, 1960m2 to 2001m1
        Delta: 1 month
```

We specified the tm() function in the tsfmt() option. [FN] **Date and time functions** contains a list of time-series functions for converting date literals to integers. Because we have monthly data, and since [FN] **Date and time functions** tells us that we want to use the tm() function, we specified the tsfmt(tm) option. The following table shows the most common types of time-series data, their formats, the appropriate conversion functions, and the corresponding options for tsappend:

Description	Format	Function	Option
time	%tc	tc()	tsfmt(tc)
time	%tC	tC()	tsfmt(tC)
daily	%td	td()	tsfmt(td)
weekly	%tw	tw()	tsfmt(tw)
monthly	%tm	tm()	tsfmt(tm)
quarterly	%tq	tq()	tsfmt(tq)
half-yearly	%th	th()	tsfmt(th)
yearly	%ty		

For yearly data, no conversion function or tsfmt() is necessary; years are numeric and do not need to be converted.

Using tsappend with panel data

tsappend's actions on panel data are similar to its action on time-series data, except that tsappend performs those actions on each time series within the panels. To work within panels, a panel variable must have been specified with tsset or xtset. It does not matter which command you use; the two are equivalent.

If the end dates vary over panels, last() and add() will produce different results. add(#) always adds # observations to each panel. If the data end at different periods before tsappend, add() is used, the data will still end at different periods after tsappend, add(). In contrast, tsappend, last() tsfmt() will cause all the panels to end on the specified last date. If the beginning dates differ across panels, using tsappend, last() tsfmt() to provide a uniform ending date will not create balanced panels because the number of observations per panel will still differ.

Consider the panel data summarized in the output below:

```
. use https://www.stata-press.com/data/r18/tsappend3, clear
. xtdescribe
      id:
          1, 2, ..., 3
                                                                        3
                                                           n =
          1998m1, 1998m2, ..., 2000m1
      t2:
                                                           T =
                                                                       25
          Delta(t2) = 1 month
          Span(t2) = 25 periods
           (id*t2 uniquely identifies each observation)
Distribution of T_i:
                      min
                               5%
                                      25%
                                               50%
                                                         75%
                                                                 95%
                                                                         max
                       13
                               13
                                       13
                                                20
                                                                  24
                                                                          24
                                                          24
    Freq.
           Percent
                      Cum.
                              Pattern
        1
             33.33
                     33.33
                              1
             33.33
                     66.67
                              1
             33.33
                    100.00
                              111111111111111111111....
        3
            100.00
                              . by id: summarize t2
-> id = 1
    Variable
                     Obs
                                        Std. dev.
                                Mean
                                                       Min
                                                                  Max
         t2
                      13
                                 474
                                         3.89444
                                                       468
                                                                  480
-> id = 2
    Variable
                     Obs
                                        Std. dev.
                                Mean
                                                       Min
                                                                  Max
                                                                  475
         t2
                      20
                               465.5
                                         5.91608
                                                       456
-> id = 3
    Variable
                     Obs
                                Mean
                                        Std. dev.
                                                       Min
                                                                  Max
         t2
                      24
                            468.3333
                                        7.322786
                                                       456
                                                                  480
```

The output from xtdescribe and summarize on these data tells us that one panel starts later than the other, that another panel ends before the other two, and that the remaining panel has a gap in the time variable but otherwise spans the entire time frame. Now consider the data after a call to tsappend, add(6):

. tsappend, a	dd(6)						
. xtdescribe							
t2: 19 De Sp	2,, 3 198m1, 1998m2, 1ta(t2) = 1 mo pan(t2) = 31 p d*t2 uniquely	onth periods		ervation)	n = T =		3 31
Distribution	of T_i: min 19	5% 19	25% 19	50% 26	75% 31	95% 31	max 31
Freq. P	Percent Cum	. Pattern	L				
1 1 1	33.33 33.33 33.33 66.67 33.33 100.00	7 1111111	.11111111	111111111 111111111 111111111	.11		
3 . by id: summ	100.00 arize t2	XXXXXXX	XXXXXXXXX	*****	XXXXXXX		
-> id = 1							
Variable	Obs	Mean	Std.	dev.	Min	Max	
t2	19	477	5.627	314	468	486	
-> id = 2							
Variable	Obs	Mean	Std.	dev.	Min	Max	
t2	26	468.5	7.648	529	456	481	
-> id = 3							
Variable	Obs	Mean	Std.	dev.	Min	Max	
t2	31	471	9.092	121	456	486	

This output from xtdescribe and summarize after the call to tsappend shows that the call to tsappend, add(6) added 6 observations to each panel and filled in the gap in the time variable in the second panel. tsappend, add() did not cause a uniform end date over the panels.

The following output illustrates the contrast between tsappend, add() and tsappend, last() tsfmt() with panel data that end at different dates. The output from xtdescribe and summarize shows that the call to tsappend, last() tsfmt() filled in the gap in t2 and caused all the panels to end at the specified end date. The output also shows that the panels remain unbalanced because one panel has a later entry date than the other two.

. use https://www.stata-press.com/data/r18/tsappend2, clear

- . tsappend, last(2000m7) tsfmt(tm)
- . xtdescribe

•									
		1, 2, 1998m1, 1 Delta(t2) Span(t2) (id*t2 un	998m2, = 1 mont = 31 per	th	each ob:	servation)	n = T =		3 31
Di	stributi	on of T_i:		5% 19		50% 31	75% 31		max 31
_	Freq.	Percent	Cum.	Pattern					
	2 1	66.67 33.33	66.67 100.00			1111111111 11111111111			
	3	100.00		XXXXXXX	XXXXXXX	*****	XXXXXXX		
	by id: s	ummarize t	2						
->	id = 1								
	Variab	le	Obs	Mean	Std.	dev.	Min	Max	
		-0	10	477	F 60'	7014	469	100	

t2	19	477	5.627314	468	486
-> id = 2					
Variable	Obs	Mean	Std. dev.	Min	Max
t2	31	471	9.092121	456	486
-> id = 3					
Variable	Obs	Mean	Std. dev.	Min	Max
t2	31	471	9.092121	456	486

Stored results

tsappend stores the following in r():

Scalars

r(add) number of observations added

Also see

[TS] tsset — Declare data to be time-series data

[XT] **xtset** — Declare data to be panel data

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Organization of the United Nations. StataNow and NetCourseNow are trademarks of StataCorp LLC. Other brand and product names are registered trademarks or trademarks of their respective companies. Copyright (c) 1985–2023 StataCorp LLC, College Station, TX, USA. All rights reserved.

For suggested citations, see the FAQ on citing Stata documentation.