estat moran - Moran's test of residual correlation with nearby residuals

Description	Quick start	Menu for estat	Syntax
Option	Remarks and examples	Stored results	Methods and formulas
References	Also see		

Description

estat moran is a postestimation test that can be run after fitting a model using regress with spatial data. It performs the Moran test for spatial correlation among the residuals.

Quick start

Linear regression of y on x 1 and x 2 , then testing for spatial correlation among the residuals using the spatial weighting matrix W
regress y x1 x2
estat moran, errorlag(W)
After the same regress command, add another spatial weighting matrix
estat moran, errorlag(W) errorlag(M)
After regress with no independent variables
regress y
estat moran, errorlag(W)

Menu for estat

Statistics $>$ Postestimation

Syntax

estat moran, errorlag(spmatname) [errorlag(spmatname) ...]
collect is allowed; see [U] 11.1.10 Prefix commands.

Option

errorlag (spmatname) specifies a spatial weighting matrix that defines the error spatial lag that will be tested. errorlag() is required. This option is repeatable to allow testing of higher-order error lags.

Remarks and examples

If you have not read [SP] Intro 1-[SP] Intro 8, you should do so before using estat moran.
To use estat moran, your data must be cross-sectional Sp data. See [SP] Intro 3 for instructions on how to prepare your data.

To specify the form of the spatial correlation to be tested, you will need to have one or more spatial weighting matrices. See [SP] Intro 2 and [SP] spmatrix for an explanation of the types of weighting matrices and how to create them.

Before fitting a spatial autoregressive (SAR) model with spregress, you may want to fit the model with regress and then run estat moran. If the Moran test is significant, you will likely want to fit the model with spregress. If the test is not significant, you may question the need to fit a SAR model.
regress can be used with a single variable before running estat moran. This is a test of the spatial correlation of the variable.

> Example 1: A test for spatial correlation

We have data on the homicide rate in counties in southern states of the U.S. homicide1990.dta contains hrate, the county-level homicide rate per year per 100,000 persons; ln_population, the logarithm of the county population; In_pdensity, the logarithm of the population density; and gini, the Gini coefficient for the county, a measure of income inequality where larger values represent more inequality (Gini 1909). The data are an extract of the data originally used by Messner et al. (2000); see Britt (1994) for a literature review of the topic. This dataset is also used for the examples in [SP] spregress.

We used spshape2dta in the usual way to create the datasets homicide1990.dta and homicide1990_shp.dta. The latter file contains the boundary coordinates for U.S. southern counties. See [SP] Intro 4, [SP] Intro 7, [SP] spshape2dta, and [SP] spset.

Because the analysis dataset and the Stata-formatted shapefile must be in our working directory to spset the data, we first save both homicide1990.dta and homicide1990_shp.dta to our working directory by using the copy command. We then load the data and type spset to display the Sp attributes of the data.

```
. copy https://www.stata-press.com/data/r18/homicide1990.dta .
. copy https://www.stata-press.com/data/r18/homicide1990_shp.dta .
. use homicide1990
(S.Messner et al.(2000), U.S southern county homicide rates in 1990)
. spset
    Sp dataset: homicide1990.dta
Linked shapefile: homicide1990_shp.dta
            Data: Cross sectional
Spatial-unit ID: _ID
    Coordinates: _CX, _CY (planar)
```

We plot the homicide rate on a map of the counties by using the grmap command; see [SP] grmap. Figure 1 is the result. - grmap hrate

Figure 1: Homicide rate in 1990 for southern U.S. counties
The homicide rate appears to be spatially dependent because the high homicide-rate counties appear to be clustered together.

To conduct the Moran test, we need a spatial weighting matrix. We will create a contiguity matrix and use the default spectral normalization for this matrix. See [SP] Intro 2 and [SP] spmatrix create for details. We type

```
. spmatrix create contiguity W
```

Now, we run regress and then estat moran:


```
. estat moran, errorlag(W)
Moran test for spatial dependence
    H0: Error terms are i.i.d.
    Errorlags: W
    chi2(1) = 265.84
    Prob > chi2 = 0.0000
```

The test reports that we can reject that the errors are i.i.d. This is not surprising based on our visual appraisal of the data.
estat moran can be used with more than one weighting matrix. In this case, it produces a joint test of whether any of the weighting matrices specify a spatial dependence.
. spmatrix create idistance M
. estat moran, errorlag(W) errorlag(M)
Moran test for spatial dependence

```
HO: Error terms are i.i.d.
    Errorlags: W M
    chi2(2) = 898.62
    Prob > chi2 = 0.0000
```

We can also use estat moran after a linear regression with independent variables:
. regress hrate ln_population \ln _pdensity gini

Source	SS	df	MS	Number of obs	=	1,412
				$\mathrm{F}(3,1408)$	=	96.78
Model	11950.8309	3	3983.61032	Prob > F	=	0.0000
Residual	57957.7591	1,408	41.1631812	R-squared	=	0.1709
				Adj R-squared	=	0.1692
Total	69908.59	1,411	49.5454217	Root MSE	=	6.4159

hrate	Coefficient	Std. err.	t	$\mathrm{P}>\|\mathrm{t}\|$	[95\% conf. interval]	
ln_populat $\sim n$.5559273	.2574637	2.16	0.031	.0508736	1.060981
ln_pdensity	.8231517	.2304413	3.57	0.000	.3711065	1.275197
gini	84.33136	5.169489	16.31	0.000	74.19063	94.47209
_cons	-32.46353	2.891056	-11.23	0.000	-38.13477	-26.79229

```
. estat moran, errorlag(W)
Moran test for spatial dependence
    HO: Error terms are i.i.d.
    Errorlags: W
    chi2(1) = 186.72
    Prob > chi2 = 0.0000
```

The Moran test is significant. We fit a SAR model using spregress, gs2sls:

```
. spregress hrate ln_population ln_pdensity gini, gs2sls errorlag(W)
    (1412 observations)
    (1412 observations (places) used)
    (weighting matrix defines }1412\mathrm{ places)
    (output omitted)
Spatial autoregressive model Number of obs = 1,412
GS2SLS estimates Wald chi2(3) = 243.84
Prob > chi2 = 0.0000
Pseudo R2 = 0.1686
```

| hrate | Coefficient | Std. err. | z | P>\|z| | [95\% conf. interval] | |
| :--- | ---: | :--- | ---: | ---: | ---: | ---: |
| hrate | | | | | | |
| ln_populat~n | .3184462 | .2664379 | 1.20 | 0.232 | -.2037625 | .8406549 |
| ln_pdensity | .8156068 | .2469074 | 3.30 | 0.001 | .3316771 | 1.299537 |
| gini | 88.44808 | 5.925536 | 14.93 | 0.000 | 76.83425 | 100.0619 |
| _cons | -31.81189 | 3.115188 | -10.21 | 0.000 | -37.91755 | -25.70624 |
| W | | | | | | |
| e.hrate | .5250879 | .0326974 | 16.06 | 0.000 | .4610021 | .5891736 |

See [SP] spregress.

Stored results

estat moran stores the following in $r()$:
Scalars
r (chi2) $\quad \chi^{2}$
$r(\mathrm{df}) \quad$ degrees of freedom of χ^{2}
$r(p) \quad p$-value for model test
Macros
r (elmat) weighting matrices used to specify error lag

Methods and formulas

Consider the model

$$
\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\mathbf{u}
$$

where \mathbf{y} is the $n \times 1$ dependent-variable vector, \mathbf{X} is the $n \times K$ matrix of covariates, $\boldsymbol{\beta}$ is the $K \times 1$ vector of regression parameters, and \mathbf{u} is the $n \times 1$ vector of disturbances. We assume that u_{i} are identically distributed with $E\left(u_{i}\right)=0$ and $E\left(u_{i}^{2}\right)=\sigma^{2}$. We want to test the hypothesis that u_{i} are uncorrelated; that is, we want to test

$$
H_{0}: E\left(\mathbf{u} \mathbf{u}^{\prime}\right)=\sigma^{2} \mathbf{I}
$$

Consider the case where the researcher believes that the spatial weighting matrix \mathbf{W}_{1} gives a proper representation of spatial links for the disturbances \mathbf{u}. In this case, the researcher could test H_{0} using the standard Moran I test statistic (Moran 1950),

$$
I=\frac{\widehat{\mathbf{u}}^{\prime} \mathbf{W}_{1} \widehat{\mathbf{u}}}{\widehat{\sigma}^{2}\left[\operatorname{tr}\left\{\left(\mathbf{W}_{1}^{\prime}+\mathbf{W}_{1}\right) \mathbf{W}_{1}\right\}\right]^{1 / 2}}
$$

where $\widehat{\mathbf{u}}=\mathbf{y}-\mathbf{X} \widehat{\boldsymbol{\beta}}$ are the estimated residuals and $\widehat{\sigma}^{2}=\widehat{\mathbf{u}}^{\prime} \widehat{\mathbf{u}} / n$ is the corresponding estimator for σ^{2}. Under appropriate assumptions, it follows from Kelejian and Prucha (2001) that $I \sim N(0,1)$ and $I^{2} \sim \chi^{2}(1)$.

Next, consider the case where the researcher is not sure whether any of the weighting matrices $\mathbf{W}_{1}, \mathbf{W}_{2}, \ldots, \mathbf{W}_{q}$ properly model the spatial interdependence between u_{i}. In this case, the researcher can test H_{0} using the $I(q)^{2}$ test statistic:

$$
I(q)^{2}=\left[\begin{array}{c}
\widehat{\mathbf{u}}^{\prime} \mathbf{W}_{1} \widehat{\mathbf{u}} / \widehat{\sigma}^{2} \\
\vdots \\
\widehat{\mathbf{u}}^{\prime} \mathbf{W}_{q} \widehat{\mathbf{u}} / \widehat{\sigma}^{2}
\end{array}\right]^{\prime} \Phi^{-1}\left[\begin{array}{c}
\widehat{\mathbf{u}}^{\prime} \mathbf{W}_{1} \widehat{\mathbf{u}} / \widehat{\sigma}^{2} \\
\vdots \\
\widehat{\mathbf{u}}^{\prime} \mathbf{W}_{q} \widehat{\mathbf{u}} / \widehat{\sigma}^{2}
\end{array}\right]
$$

where $\Phi=\left(\phi_{r s}\right)$ and $r, s=1, \ldots, q$:

$$
\phi_{r s}=\frac{1}{2} \operatorname{tr}\left\{\left(\mathbf{W}_{r}+\mathbf{W}_{r}^{\prime}\right)\left(\mathbf{W}_{s}+\mathbf{W}_{s}^{\prime}\right)\right\}
$$

It follows from Kelejian and Prucha (2001) and Drukker and Prucha (2013) that $I(q)^{2} \sim \chi^{2}(q)$ under H_{0}.

References

Britt, C. L. 1994. Crime and unemployment among youths in the United States, 1958-1990: A time series analysis. American Journal of Economics and Sociology 53: 99-109. https://doi.org/10.1111/j.1536-7150.1994.tb02680.x.

Drukker, D. M., and I. R. Prucha. 2013. On the $I^{2}(q)$ test statistic for spatial dependence: Finite sample standardization and properties. Spatial Economic Analysis 8: 271-292. https://doi.org/10.1080/17421772.2013.804630.
Gini, C. 1909. Concentration and dependency ratios (in Italian). English translation in Rivista di Politica Economica 1997 87: 769-789.

Kelejian, H. H., and I. R. Prucha. 2001. On the asymptotic distribution of the Moran I test statistic with applications. Journal of Econometrics 104: 219-257. https://doi.org/10.1016/S0304-4076(01)00064-1.
Messner, S. F., L. Anselin, D. F. Hawkins, G. Deane, S. E. Tolnay, and R. D. Baller. 2000. An Atlas of the Spatial Patterning of County-Level Homicide, 1960-1990. Pittsburgh: National Consortium on Violence Research.

Moran, P. A. P. 1950. Notes on continuous stochastic phenomena. Biometrika 37: 17-23. https://doi.org/10.2307/2332142.

Also see

[SP] Intro - Introduction to spatial data and SAR models
[SP] spmatrix create - Create standard weighting matrices
[SP] spregress - Spatial autoregressive models
$[R]$ regress - Linear regression

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Organization of the United Nations. StataNow and NetCourseNow are trademarks of StataCorp LLC. Other brand and product names are registered trademarks or trademarks of their respective companies. Copyright (c) 1985-2023 StataCorp LLC, College Station, TX,
 USA. All rights reserved.

For suggested citations, see the FAQ on citing Stata documentation.

