Also see

Example 53g — Finite mixture Poisson regression

Description Remarks and examples References

Description

To demonstrate a finite mixture model (FMM), we use the following data:

```
. use https://www.stata-press.com/data/r18/gsem_mixture
(U.S. Medical Expenditure Panel Survey (2003))
. describe
Contains data from https://www.stata-press.com/data/r18/gsem_mixture.dta
 Observations:
                        3.677
                                                U.S. Medical Expenditure Panel
                                                  Survey (2003)
    Variables:
                           12
                                                26 Jan 2023 08:46
                                                (_dta has notes)
Variable
              Storage
                         Display
                                    Value
                          format
                                    label
                                                Variable label
    name
                 type
drvisits
                int
                         %9.0g
                                                Number of doctor visits
                         %8.0g
                                                Has private supplementary
private
                byte
                                                  insurance
medicaid
                byte
                         %8.0g
                                                Has Medicaid public insurance
age
                byte
                         %8.0g
                                                Age in years
educ
                byte
                         %8.0g
                                                Years of education
actlim
                byte
                         %8.0g
                                                Has activity limitations
chronic
                byte
                         %8.0g
                                                Number of chronic conditions
income
                float
                         %9.0g
                                                Income in $1,000s
offer
                byte
                         %8.0g
                                                Employer offers insurance
hpvisits
                                                Number of visits to health
                int
                         %8.0g
                                                  professionals other than
                                                  doctors
female
                byte
                         %8.0g
                                                Female
                byte
phylim
                         %8.0g
                                                Has physical limitation
```

Sorted by:

. notes

_dta:

- Data on annual number of doctor visits for individuals age 65 and older from the U.S. Medical Expenditure Panel Survey for 2003.
- Data are analyzed in Cameron, A. C., and P. K. Trivedi. 2010. Microeconometrics Using Stata. Rev. ed. College Station, TX: Stata Press.
- 3. Additional information on finite mixture models for count data and a similar example are found in Deb, P., and P. K. Trivedi. 1997. Demand for medical care by the elderly: A finite mixture approach. Journal of Applied Econometrics 12: 313-336. https://doi.org/10.1002/(SICI)1099-1255(199705)12:3<313::AID-JAE440>3.0.C > 0;2-G.

See Finite mixture models in [SEM] Intro 5 for background.

Remarks and examples

stata.com

We are interested in fitting a Poisson regression to model the annual number of doctor visits as a function of whether an individual has private supplementary insurance, whether he or she has Medicaid, age, age squared, education level, whether he or she has activity limitations, and the number of chronic conditions. If we believed that the same model applied to the entire population, we could fit the model by typing

. poisson drvisits private medicaid c.age##c.age educ actlim chronic

or, equivalently, by using gsem,

. gsem (drvisits <- private medicaid c.age##c.age educ actlim chronic), poisson

However, we believe that the model may differ across groups in the population. We do not have any information that identifies what these groups are or that tells us which individuals in our sample belong to each group. We can consider a categorical latent variable that identifies these groups and refer to the levels of this latent variable as latent classes. With an FMM, we can incorporate the categorical latent variable into our model to account for differences across the latent classes.

Following Cameron and Trivedi (2022), we will fit an FMM with a Poisson regression component for each latent class. We will estimate distinct coefficients for the Poisson model in each class, and we will estimate the probability of belonging to each of these classes using a multinomial logistic regression. We fit the model as follows:

> porsson rere						
Computing star	rting values u	sing random	id:			
(iteration log or	nitted)					
Generalized s	tructural equa	tion model			Number of o	bs = 3,677
Log likelihoo	d = -11502.686	i				
	Coefficient	Std. err.	Z	P> z	[95% conf.	interval]
1.C	(base outco	ome)				
2.0						
_cons	.877227	.0494614	17.74	0.000	.7802845	.9741696
Class: 1 Response: drv:	isits					
Class: 1 Response: drv Family: Pois Link: Log	isits sson					
Class: 1 Response: drv: Family: Poi: Link: Log	isits sson Coefficient	Std. err.	z	P> z	[95% conf.	interval]
Class: 1 Response: drv: Family: Poi: Link: Log drvisits	isits sson Coefficient	Std. err.	z	P> z	[95% conf.	interval]
Class: 1 Response: drv: Family: Poi: Link: Log drvisits private	isits sson Coefficient .138229	Std. err.	z 5.58	P> z 0.000	[95% conf. .0896951	interval] .1867629
Class: 1 Response: drv: Family: Pois Link: Log drvisits private medicaid	isits sson Coefficient .138229 .1269723	Std. err. .0247626 .0341525	z 5.58 3.72	P> z 0.000 0.000	[95% conf. .0896951 .0600345	interval] .1867629 .19391
Class: 1 Response: drv. Family: Poir Link: Log drvisits private medicaid age	isits sson Coefficient .138229 .1269723 .2628874	Std. err. .0247626 .0341525 .0466774	z 5.58 3.72 5.63	P> z 0.000 0.000 0.000	[95% conf. .0896951 .0600345 .1714014	interval] .1867629 .19391 .3543735
Class: 1 Response: drv: Family: Poi: Link: Log drvisits private medicaid age c.age#c.age	isits sson Coefficient .138229 .1269723 .2628874 0017418	Std. err. .0247626 .0341525 .0466774 .0003108	z 5.58 3.72 5.63 -5.60	P> z 0.000 0.000 0.000 0.000	[95% conf. .0896951 .0600345 .1714014 002351	interval] .1867625 .19391 .3543735 0011326
Class: 1 Response: drv. Family: Poin Link: Log drvisits private medicaid age c.age#c.age educ	Coefficient .138229 .1269723 .2628874 0017418 .0241679	Std. err. .0247626 .0341525 .0466774 .0003108 .0030705	z 5.58 3.72 5.63 -5.60 7.87	P> z 0.000 0.000 0.000 0.000 0.000	[95% conf. .0896951 .0600345 .1714014 002351 .0181499	interval] .1867629 .19391 .3543735 0011326 .030186
Class: 1 Response: drv. Family: Poir Link: Log drvisits private medicaid age c.age#c.age educ actlim	Coefficient .138229 .1269723 .2628874 0017418 .0241679 .1831598	Std. err. .0247626 .0341525 .0466774 .0003108 .0030705 .0238817	z 5.58 3.72 5.63 -5.60 7.87 7.67	P> z 0.000 0.000 0.000 0.000 0.000 0.000	[95% conf. .0896951 .0600345 .1714014 002351 .0181499 .1363525	interval] .1867629 .19391 .3543739 0011326 .030186 .2299671
Class: 1 Response: drv. Family: Poin Link: Log drvisits private medicaid age c.age#c.age educ actlim chronic	Coefficient .138229 .1269723 .2628874 0017418 .0241679 .1831598 .1970511	Std. err. .0247626 .0341525 .0466774 .0003108 .0030705 .0238817 .0088783	z 5.58 3.72 5.63 -5.60 7.87 7.67 22.19	P> z 0.000 0.000 0.000 0.000 0.000 0.000 0.000	[95% conf. .0896951 .0600345 .1714014 002351 .0181499 .1363525 .17965	interval] .1867629 .19391 .3543735 0011326 .030186 .2299671 .2144523

Class: 2 Response: drvi Family: Pois Link: Log	isits sson					
	Coefficient	Std. err.	Z	P> z	[95% conf.	interval]
drvisits						
private	.2077415	.0306353	6.78	0.000	.1476974	.2677856
medicaid	.1071618	.0407211	2.63	0.008	.02735	.1869736
age	.3798087	.0562035	6.76	0.000	.269652	.4899655
c.age#c.age	0024869	.0003736	-6.66	0.000	0032191	0017547
educ	.029099	.003972	7.33	0.000	.021314	.0368841
actlim	.1244235	.0310547	4.01	0.000	.0635574	.1852895
chronic	.3191166	.0089757	35.55	0.000	.3015247	.3367086
_cons	-14.25713	2.101964	-6.78	0.000	-18.37691	-10.13736

Notes:

- 1. We used the lclass(C 2) to specify that our categorical latent variable is named C and has two latent classes.
- 2. The first table in the output provides the estimated coefficients in the multinomial logit model for C.
- 3. The next two tables are the results for the Poisson regression models for the first and second classes. By default, the coefficients and intercepts vary across the classes. We can specify lcinvariant(cons) if we want intercepts to be constrained to be equal across classes, or we can specify lcinvariant(coef) if we want all coefficients constrained to be equal across classes. See [SEM] gsem lclass options for details on the lcinvariant() option.
- 4. We added the startvalues(randomid), draws(5) seed(15)) option to request that starting values be computed using random class assignments. In this option, draws(5) specifies that five random draws be taken and that the one with the best log likelihood after the EM iterations be selected. If you fit FMMs and other models with categorical latent variables, taking multiple draws of random starting values can help to prevent convergence at a local maximum rather than the global maximum. gsem provides a variety of options for obtaining starting values. See [SEM] Intro 12 and [SEM] gsem estimation options for more information on starting values.
- 5. The fmm: prefix can be used to fit finite mixture regression models with a single response variable. We could have fit this same model with fmm: poisson by typing

[.] fmm 2, startvalues(randomid, draws(5) seed(15)): /// poisson drvisits private medicaid c.age##c.age educ actlim chronic

We can use estat lcprob to estimate the proportion of individuals in each class.

. estat lcprob Latent class m	o marginal prob	abilities		Number	of	obs	=	3,677
	Margin	Delta-method std. err.	[95% conf.	interval]				
C 1 2	. 2937527 . 7062473	.0102614 .0102614	.2740502 .6857414	.3142586 .7259498				

We find that about 29% of the population is in class 1 and about 71% is in class 2.

To better understand these classes, we use estat lcmean to estimate the marginal predicted counts (means) for each class.

. €	estat lcmean	n					
Lat	cent class r	marginal mean	5			Number of o	bs = 3,677
] Margin	Delta-method std. err.	z	P> z	[95% conf.	interval]
1	drvisits	13.95943	.1767506	78.98	0.000	13.613	14.30585
2	drvisits	3.801692	.0587685	64.69	0.000	3.686508	3.916876

Class 1 appears to represent those who visit the doctor frequently and class 2, those who visit less frequently.

We can also predict the posterior probabilities of class membership and then use those to determine the predicted class for each individual.

•	predict postpr_dr*, classposteriorpr							
	. tabulate pclass_dr							
	pclass_dr	Freq.	Percent	Cum.				
	1 2	1,061 2,616	28.86 71.14	28.86 100.00				
_	Total	3,677	100.00					

We see that 1,061 individuals in our sample are predicted to be in class 1, the class that frequently visits the doctor.

Our dataset also includes the variable hpvisits, which records the number of visits individuals make to health professionals other than doctors. We fit a similar model to the one above but with hpvisits as our response variable.

1	ass(C 2) start	values(class	sid pcla	ss_dr)		
(iteration log of	nitted)					
Generalized s Log likelihoo	tructural equa d = -8510.4898	tion model			Number of o	bs = 3,677
	Coefficient	Std. err.	Z	P> z	[95% conf.	interval]
1.C	(base outco	ome)				
2.C _cons	2.241837	.059523	37.66	0.000	2.125174	2.3585
Class: 1 Response: hpv Family: Poi Link: Log	isits sson					
	Coefficient	Std. err.	Z	P> z	[95% conf.	interval]
hpvisits						
private	.3218525	.0347116	9.27	0.000	.253819	.38988
medicaid	.0715449	.0566317	1.26	0.206	0394511	.18254
age	.0975749	.0743567	1.31	0.189	0481615	.2433113
c.age#c.age	0004749	.0004971	-0.96	0.339	0014492	.0004993
educ	.0278151	.0046572	5.97	0.000	.0186872	.0369429
actlim	.7088077	.0353277	20.06	0.000	.6395666	.7780488
chronic	0077779	.0127981	-0.61	0.543	0328617	.017305
_cons	-2.430713	2.766794	-0.88	0.380	-7.853529	2.992103
Class: 2						
Response: hpv Family: Poi	isits sson					
Link: Log						
	Coefficient	Std. err.	z	P> z	[95% conf.	interval]
hpvisits						
- private	.4448319	.0451971	9.84	0.000	.3562473	.533416
medicaid	4490187	.074252	-6.05	0.000	5945499	303487
age	.4160345	.0797576	5.22	0.000	.2597125	.572356
c.age#c.age	0026784	.0005287	-5.07	0.000	0037147	001642
educ	.1250644	.0062921	19.88	0.000	.1127322	.137396
educ actlim	.1250644 .3357366	.0062921 .0442285	19.88 7.59	0.000 0.000	.1127322 .2490503	.137396 .422422
educ actlim chronic	.1250644 .3357366 .206585	.0062921 .0442285 .0152161	19.88 7.59 13.58	0.000 0.000 0.000	.1127322 .2490503 .176762	.137396 .422422 .236408

This time, we used the startvalues(classid pclass_dr) option to specify how starting values are calculated. This means that we are using the variable pclass_dr as an initial guess of class membership to be used when computing starting values.

We again use estat lcprob to estimate the predicted proportion of the population in each class.

. estat lcprob Latent class m	o marginal prob	abilities		Number	of	obs	=	3,677
	Margin	Delta-method std. err.	[95% conf.	interval]				
C 1 2	.0960559 .9039441	.0051683 .0051683	.0863925 .893326	.106674 .9136075				

This time about 10% is in class 1, and 90% is in class 2.

We can predict the class for each individual based on this model and compare the classifications from the two models.

. predict postpr_hp*, classposteriorpr								
. generate pclass_hp = 1 + (postpr_hp2>0.5)								
. tabulate pclass_hp pclass_dr								
	pclass	_dr						
pclass_hp	1	2	Total					
1	169	180	349					
2	892	2,436	3,328					
Total	1,061	2,616	3,677					

Many individuals are predicted to be in class 2 based on both models, meaning that they are in the group that visits the doctor infrequently and in the group that visits other health professionals infrequently. However, there are also 892 that are classified differently by the two models. These individuals are in the class that visits the doctor frequently based on the first model but in the class that visits other healthcare professionals infrequently based on the second model.

In [SEM] **Example 54g**, we consider simultaneously modeling drvisits and hpvisits and using a single categorical latent variable that identifies groups in the population.

References

Cameron, A. C., and P. K. Trivedi. 2022. *Microeconometrics Using Stata*. 2nd ed. College Station, TX: Stata Press. Deb, P., and P. K. Trivedi. 1997. Demand for medical care by the elderly: A finite mixture approach. *Journal of Applied Econometrics* 12: 313–336. https://doi.org/10.1002/(SICI)1099-1255(199705)12:3(313::AID-JAE440)3.0.CO;2-G.

Also see

[SEM] Example 54g — Finite mixture Poisson regression, multiple responses

[SEM] Intro 5 — Tour of models

[SEM] gsem — Generalized structural equation model estimation command

[SEM] estat lcmean — Latent class marginal means

[SEM] estat lcprob — Latent class marginal probabilities

[FMM] fmm intro — Introduction to finite mixture models

[FMM] **fmm: poisson** — Finite mixtures of Poisson regression models

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Organization of the United Nations. StataNow and NetCourseNow are trademarks of StataCorp LLC. Other brand and product names are registered trademarks or trademarks of their respective companies. Copyright © 1985–2023 StataCorp LLC, College Station, TX, USA. All rights reserved.

For suggested citations, see the FAQ on citing Stata documentation.