
Title stata.com

ciwidth usermethod — Add your own methods to the ciwidth command

Description Syntax Remarks and examples References Also see

Description
The ciwidth command allows you to add your own methods to ciwidth and produce tables and

graphs of results automatically.

Syntax
Compute sample size

ciwidth usermethod . . . , width(numlist)
[
probwidth(numlist) ciwidthopts useropts

]
Compute CI width

ciwidth usermethod . . . , nspec
[
probwidth(numlist) ciwidthopts useropts

]
Compute probability of CI width

ciwidth usermethod . . . , nspec width(numlist)
[

ciwidthopts useropts
]

usermethod is the name of the method you would like to add to the ciwidth command. When naming
your ciwidth methods, you should follow the same convention as for naming the programs you
add to Stata—do not pick “nice” names that may later be used by Stata’s official methods. The
length of usermethod may not exceed 14 characters.

useropts are the options supported by your method usermethod.

nspec contains n(numlist) for a one-sample CI or any of the sample-size options of ciwidthopts such
as n1(numlist) and n2(numlist) for a two-sample CI.

collect is allowed; see [U] 11.1.10 Prefix commands.

Remarks and examples stata.com

Adding your own methods to ciwidth is easy. Suppose you want to add a method called mymethod
to ciwidth. Simply

1. write an r-class program called ciwidth cmd mymethod that computes sample size, prob-
ability of CI width, or CI width and follows ciwidth’s convention for naming common
options and storing results; and

2. place the program where Stata can find it.

You are done. You can now use mymethod within ciwidth like any other official ciwidth method.

1

http://stata.com
https://www.stata.com/manuals/pss-3ciwidth.pdf#pss-3ciwidth
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/pss-3ciwidth.pdf#pss-3ciwidthSyntaxciwidth_options
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/pss-3ciwidth.pdf#pss-3ciwidthSyntaxciwidth_options
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/pss-3ciwidth.pdf#pss-3ciwidthSyntaxciwidth_options
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/pss-3ciwidth.pdf#pss-3ciwidthSyntaxciwidth_options
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
http://stata.com
https://www.stata.com/manuals/pprogram.pdf#pprogram

2 ciwidth usermethod — Add your own methods to the ciwidth command

Remarks are presented under the following headings:

A quick example
Steps for adding a new method to the ciwidth command
Convention for naming options and storing results
Allowing multiple values in method-specific options
Customizing default tables

Setting supported columns
Modifying the default table columns
Modifying the look of the default table
Example continued

Customizing default graphs
Other settings
Handling parsing more efficiently
More examples: Compute probability of CI width for a one-proportion CI

Step 1: Program to simulate the data and compute the CI width
Step 2: Estimating probability of CI width using simulation
Step 3: Adding probability of CI width computation to ciwidth
Step 4: Computing exact probability of CI width

Initializer’s s() return settings

A quick example

Before we discuss the technical details in the following sections, let’s try an example. Let’s write a
program to compute CI width for a one-mean normal-based CI given sample size, standard deviation,
and confidence level. For simplicity, we assume a two-sided CI. We will call our new method mymean.
(Note that this method is available in the official ciwidth onemean command when you specify the
knownsd option.)

We create an ado-file called ciwidth cmd mymean.ado that contains the following Stata program:

// evaluator
program ciwidth_cmd_mymean, rclass

version 18.0 // (or version 18.5 for StataNow)
/* parse options */
syntax, n(integer) /// sample size

[Level(cilevel) /// confidence level
Stddev(real 1)] /// standard deviation

/* compute CI width */
tempname width
scalar ‘width’ = 2*invnormal(1/2+‘level’/200)*‘stddev’/sqrt(‘n’)
/* store results */
return scalar level = ‘level’
return scalar N = ‘n’
return scalar width = ‘width’
return scalar stddev = ‘stddev’

end

Our ado-program consists of three sections: the syntax command for parsing options, the CI width
computation, and stored or returned results. The three sections work as follows:

The ciwidth cmd mymean program has two of ciwidth’s common options, level() for
confidence level and n() for sample size, and it has its own option, stddev(), with the
minimum abbreviation s() and default value of 1, to specify a standard deviation.

After the options are parsed, the CI width is computed and stored in a temporary scalar
‘width’.

https://www.stata.com/manuals/pss-3ciwidthonemean.pdf#pss-3ciwidthonemean
https://www.stata.com/manuals/psyntax.pdf#psyntax
https://www.stata.com/manuals/pmacro.pdf#pmacro

ciwidth usermethod — Add your own methods to the ciwidth command 3

Finally, the resulting CI width and other results are stored in return scalars. Following
ciwidth’s convention for naming commonly returned results, the confidence level is stored
in r(level), the sample size in r(N), and the computed CI width in r(width). The
program additionally stores the standard deviation in r(stddev).

We can now use mymean within ciwidth as we would any other existing method of ciwidth:

. ciwidth mymean, level(95) n(10) stddev(0.25)

Estimated width
Two-sided CI

level N width

95 10 .3099

We can check our result using the official ciwidth onemean:

. ciwidth onemean, level(95) n(10) sd(0.25) knownsd

Estimated width for a one-mean CI
Normal two-sided CI

Study parameters:

level = 95.00
N = 10

sd = 0.2500

Estimated width:

width = 0.3099

We can compute results for multiple sample sizes by specifying multiple values in the n() option.
Note that our ciwidth cmd mymean program accepts only one value at a time in n(). When a
numlist is specified in the ciwidth command’s n() option, ciwidth automatically handles that
numlist for us.

. ciwidth mymean, level(95) n(10 20) stddev(0.25)

Estimated width
Two-sided CI

level N width

95 10 .3099
95 20 .2191

We can also compute results for multiple sample sizes and confidence levels without any additional
effort on our part:

. ciwidth mymean, level(90 95) n(10 20) stddev(0.25)

Estimated width
Two-sided CI

level N width

90 10 .2601
90 20 .1839
95 10 .3099
95 20 .2191

https://www.stata.com/manuals/pss-3ciwidthonemean.pdf#pss-3ciwidthonemean
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist

4 ciwidth usermethod — Add your own methods to the ciwidth command

We can even produce a graph by merely specifying the graph option:

. ciwidth mymean, level(90 95) n(10(10)100) stddev(0.25) graph

.1

.15

.2

.25

.3

C
I w

id
th

 (
w

)

0 20 40 60 80 100
Sample size (N)

90
95

Confidence level (100(1-α))

Two-sided CI

Estimated width

The above is just a simple example. Your program can be as complicated as you would like: you
can even use simulations to compute your results; see More examples: Compute probability of CI
width for a one-proportion CI. You can also customize your tables and graphs with a little extra effort.

Steps for adding a new method to the ciwidth command

Suppose you want to add your own method, usermethod, to the ciwidth command. Here is an
outline of the steps to follow:

1. Create the evaluator, an r-class program called ciwidth cmd usermethod and defined
by the ado-file ciwidth cmd usermethod.ado, that performs precision and sample-size
computations and follows ciwidth’s convention for naming options and storing results.

2. Optionally, create an initializer, an s-class program called ciwidth cmd usermethod init
and defined by the ado-file ciwidth cmd usermethod init.ado, that specifies information
about table columns, options that may allow a numlist, and so on.

3. Optionally, create a parser, a program called ciwidth cmd usermethod parse and defined
by the ado-file ciwidth cmd usermethod parse.ado, that checks the syntax of user-
specific options, useropts.

4. Place all of your programs where Stata can find them.

You can now use your usermethod with ciwidth:

. ciwidth usermethod . . .

You may also use programs within ciwidth that are not defined by an ado-file (that is, they were
defined in a do-file or by hand).

https://www.stata.com/manuals/pprogram.pdf#pprogram
https://www.stata.com/manuals/pprogram.pdf#pprogram
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist

ciwidth usermethod — Add your own methods to the ciwidth command 5

Convention for naming options and storing results

For the ciwidth command to automatically recognize its common options, you must ensure that
you follow ciwidth’s naming convention for these options in your program. For example, ciwidth
specifies the confidence level in the level() option with minimum abbreviation of l(). You need
to ensure that you use the same option with the same abbreviation in your evaluator to specify the
confidence level. The same applies to all of ciwidth’s common options described in [PSS-3] ciwidth.

You can specify additional method-specific options, but ciwidth will not know about them unless
you make it aware of them; see Allowing multiple values in method-specific options for details.

Unlike ciwidth’s official methods, user-defined methods do not require specifying the prob-
width() option by default because some computations, such as our earlier normal-based one-mean CI
example, may not need the probability of CI width. The probability of CI width is often needed when
the computation of the width depends on unknown parameters that are themselves estimated from the
data. For instance, if the standard deviation is not known a priori, the computation of the CI width for
a one-mean CI incorporates the uncertainty about the specified standard deviation because its estimate
may vary from one sample to another. The specified probability of CI width is used to ensure that the
estimated CI width is no larger than the desired width of a future CI with the prespecified probability.
This is the default method of ciwidth onemean. Also see More examples: Compute probability of
CI width for a one-proportion CI for an example of computing probability of CI width.

To produce tables and graphs of results, you must ensure that your evaluator follows ciwidth’s
convention for storing results. ciwidth’s commonly stored results are described in Stored results
of [PSS-3] ciwidth. For example, the value for a confidence level should be stored in the scalar
r(level), the value for a total sample size in the scalar r(N), the value for CI width in the scalar
r(width), the value for probability of CI width, if available, in the scalar r(Pr width), and so on.

You can also store additional method-specific results, but ciwidth will not know about them
unless you make it aware of them; see Customizing default tables for details.

Allowing multiple values in method-specific options

By default, the ciwidth command accepts multiple values only within its common options. If
you want to allow multiple values in the method-specific options useropts, you need to let ciwidth
know about them. This is done via the initializer.

To allow the specification of multiple values, or a numlist, in method-specific options, you need
to list the names of the options with proper abbreviations in an s-class macro s(prss numopts)
within the ciwidth cmd usermethod init program.

Recall our earlier example in which we added the mymean method, calculating the CI width of a
two-sided normal CI for one-sample mean, to ciwidth. We computed CI widths for multiple values
of confidence level and sample size. What if we would also like to specify multiple values of standard
deviation in the stddev() option of mymean? If we do this now, we will receive an error message,

. ciwidth mymean, level(95) n(10) stddev(0.25 0.5)
option stddev() incorrectly specified
r(198);

because the stddev() option is not allowed to include numlist by the evaluator and is not one
of ciwidth’s common options. To make ciwidth recognize this option as one allowing numlist,
we need to specify this in the initializer. Following the guidelines, we create an ado-file called ci-
width cmd mymean init.ado and specify the name of the stddev() option (with the corresponding
abbreviation) in the s-class macro s(prss numopts) within the ciwidth cmd mymean init pro-
gram.

https://www.stata.com/manuals/pss-3ciwidth.pdf#pss-3ciwidthSyntaxciwidth_options
https://www.stata.com/manuals/pss-3ciwidth.pdf#pss-3ciwidth
https://www.stata.com/manuals/pss-3ciwidthonemean.pdf#pss-3ciwidthonemean
https://www.stata.com/manuals/pss-3ciwidth.pdf#pss-3ciwidthStoredresults
https://www.stata.com/manuals/pss-3ciwidth.pdf#pss-3ciwidth
https://www.stata.com/manuals/pss-3ciwidth.pdf#pss-3ciwidthSyntaxciwidth_options
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/perror.pdf#perrorRemarksandexamplesr(198)

6 ciwidth usermethod — Add your own methods to the ciwidth command

// initializer
program ciwidth_cmd_mymean_init, sclass

version 18.0 // (or version 18.5 for StataNow)
sreturn clear
sreturn local prss_numopts "Stddev"

end

We now can specify multiple standard deviations:

. ciwidth mymean, level(95) n(10) stddev(0.25 0.5)

Estimated width
Two-sided CI

level N width

95 10 .3099
95 10 .6198

Customizing default tables

The ciwidth command with user-defined methods always displays results in a table. By default,
it displays columns level or alpha (whichever is specified), N, and width, which contain the
confidence level, the sample size, and the CI width, respectively. If option probwidth() or both
options n() and width() are specified, the Pr width column is also shown in the default table
following the N column. See Setting supported columns and Modifying the default table columns for
details on how to customize the default table columns.

The default column labels are the column names, and the default formats are %7.4g for level,
alpha, width, and Pr width and %7.0gc for N. These and other settings controlling the look of
the default table can be changed as described in Modifying the look of the default table.

You can always use the table() option to customize your table. However, if you want to modify
how the table looks by default, you need to follow the steps described in the following sections:

Setting supported columns
Modifying the default table columns
Modifying the look of the default table
Example continued

Setting supported columns

The ciwidth command automatically supports a number of columns, such as level, alpha,
width, Pr width, N, etc. The supported columns are the columns that can be accessed within
ciwidth’s options table() and graph().

Most of the time, you will have additional columns, usercolnames, which you will want ciwidth to
support. To make ciwidth recognize the columns as supported columns, you must list the names of the
additional columns, usercolnames, in an s-class macro s(prss colnames) in the initializer. Columns
usercolnames will then be added to ciwidth’s list of supported columns. Columns usercolnames will
also be displayed in the default table unless s(prss tabcolnames) or s(prss alltabcolnames)
is set.

If you want to reset ciwidth’s list of supported columns, that is, to specify all the supported
columns manually, you should use the s(prss allcolnames) macro. The supported columns will
then include only the ones you listed in the macro. If you specify s(prss allcolnames), you

ciwidth usermethod — Add your own methods to the ciwidth command 7

must remember to include ciwidth’s main columns N, width, level, Pr width (if applicable) in
your list. Otherwise, you may not be able to use some of ciwidth’s functionality, such as default
graphs. If s(prss colnames) is specified together with s(prss allcolnames), the former will be
ignored. The specified supported columns will be automatically displayed in the default table unless
s(prss alltabcolnames) is set.

The values corresponding to the specified columns must be stored by the evaluator in r() scalars
with the same names as the column names. For example, the value for column level is stored in
r(level), the value for column width is stored in r(width), and the value for column N is stored
in r(N).

Any column not listed in s(prss colnames) or s(prss allcolnames) will not be available
within the ciwidth command. For example, any reference to such a column within ciwidth’s options
table() and graph() will result in an error.

Modifying the default table columns

By default, ciwidth displays the specified supported columns. If you want to display only a subset of
those columns, you can use either s(prss tabcolnames) or s(prss alltabcolnames) to specify
the columns to be displayed. You specify additional columns to be displayed in s(prss tabcolnames)
and a complete list of the displayed columns in s(prss alltabcolnames). If you specify
s(prss tabcolnames), the displayed columns will include level or alpha (whichever is specified
with the command), N, Pr width (if applicable), width and the additional columns you specified.
If you specify s(prss alltabcolnames), only the columns listed in this macro will be displayed.
One situation when you may want to do this is if you want to change the order in which the columns
are displayed by default. If you specify both macros, s(prss tabcolnames) will be ignored. You
can specify only the names of supported columns in these macros.

Modifying the look of the default table

The default table column labels are the column names. You can change this by specifying your
own column labels in the s(prss collabels) macro. The labels must be properly quoted if they
contain spaces or quotes. The labels must be specified for all columns listed in s(prss colnames)
or s(prss allcolnames).

The default column formats are %7.0gc for sample sizes and %7.4g for all other columns. You can
change this by specifying your own column formats in the s(prss colformats) macro. The formats
must be quoted and specified for all columns listed in s(prss colnames) or s(prss allcolnames).

The default column widths are the widths of the default formats plus one. You can specify your
own column widths in the s(prss colwidths) macro. The widths must be specified for all columns
listed in s(prss colnames) or s(prss allcolnames).

Example continued

Continuing our mymean example, we want to add a column containing the specified standard
deviation to the list of supported columns. The specified standard deviation is stored in r(stddev) in
the mymean evaluator, so the name of our column is stddev. We specify it in s(prss colnames)
in our initializer as follows:

8 ciwidth usermethod — Add your own methods to the ciwidth command

// initializer
program drop ciwidth_cmd_mymean_init
program ciwidth_cmd_mymean_init, sclass

version 18.0 // (or version 18.5 for StataNow)
sreturn clear
sreturn local prss_numopts "Stddev"
sreturn local prss_colnames "stddev" // <-- new line

end

We rerun our command now and see that the stddev column is added to the default table:

. ciwidth mymean, level(95) n(10) stddev(0.25)

Estimated width
Two-sided CI

level N width stddev

95 10 .3099 .25

We can also change the default column label of the stddev column to “Std. dev.”. Note that we
can do this within ciwidth’s option table(), but if we want this label to show up automatically
in the default table, we should specify it in the initializer. We specify the column label in the
s(prss collabels) macro.

// initializer
program drop ciwidth_cmd_mymean_init
program ciwidth_cmd_mymean_init, sclass

version 18.0 // (or version 18.5 for StataNow)
sreturn clear
sreturn local prss_numopts "sd"
sreturn local prss_colnames "stddev"
sreturn local prss_collabels ‘""Std. dev.""’ // <-- new line

end

The column containing standard deviation now has the new label

. ciwidth mymean, level(95) n(10) stddev(0.25)

Estimated width
Two-sided CI

level N width Std. dev.

95 10 .3099 .25

Customizing default graphs

By default, ciwidth plots the estimated CI width on the y axis and the specified sample size on
the x axis or the estimated sample size on the y axis and the specified CI width on the x axis. See
[PSS-3] ciwidth, graph for details about other default settings.

You can overwrite the default column labels displayed on the graph by specifying the
s(prss colgrlabels) macro. The specification of the graph labels is the same as the specifi-
cation of table column labels.

You can also overwrite the default symbols that are used to label the results on the graph by
specifying the new symbols in the macro s(prss colgrsymbols). The symbols must be specified
for all columns listed in s(prss colnames) or s(prss allcolnames).

https://www.stata.com/manuals/pss-3ciwidth.pdf#pss-3ciwidthSyntaxciwidth_options
https://www.stata.com/manuals/pss-3ciwidthgraph.pdf#pss-3ciwidth,graph
https://www.stata.com/manuals/g-4text.pdf#g-4text

ciwidth usermethod — Add your own methods to the ciwidth command 9

Other settings

If your method supports command arguments, the arguments specified directly following the method
name, you can specify their corresponding column names in the s(prss argnames) macro. You
can then refer to these arguments as arg1, arg2, and so on, when producing tables or graphs.

ciwidth usermethod uses the following generic titles: “Estimated sample size” for sample-size
determination, “Estimated width” for CI width determination, and “Estimated probability of width”
for probability of CI width determination. You can extend these titles to be more specific to your
method by adding text in the s(prss title) macro. For example, if s(prss title) contains “for
my CI”, the resulting titles will be “Estimated sample size for my CI”, “Estimated width for my CI”,
and “Estimated probability of width for my CI”.

ciwidth usermethod uses the following generic subtitles: “Two-sided CI” for a two-sided CI,
“One-sided upper CI” when the upper option is specified, and “One-sided lower CI” when the lower
option is specified. You can change the default subtitle by specifying the s(prss subtitle) macro.

The steps for adding your own two-sample methods are the same as those for adding one-sample
methods, except you may need to set the s(prss samples) macro to contain twosample in the
initializer. If any of the two-sample options n1(), n2(), and nratio() are specified, ciwidth
automatically recognizes the method as a two-sample method. If these options are not used and
you need the method to be recognized as a two-sample method, you must set s(prss samples)
to twosample. If you do not want ciwidth to respect the two-sample options, you should set
s(prss samples) to onesample.

Handling parsing more efficiently

The ciwidth command checks its common options, but you are responsible for checking your
method-specific options, useropts, or their interaction with ciwidth’s common options. You can
certainly do this in your evaluator. However, the checks will then be performed each time your
evaluator is called. You can instead perform all of your checks once within the parser.

Your parser may be an s-class command and may set any of the s() results typically specified
in the initializer. This may be useful, for example, for building the columns displayed in the default
table dynamically, depending on which options were specified. If all desired s() results are set in
the parser, you do not need an initializer.

More examples: Compute probability of CI width for a one-proportion CI

For some CIs, the expressions for the required sample size or CI width may not be available or
difficult to compute. In such cases, you can use simulation to obtain the results. And you can turn
your simulation program into a user-defined ciwidth method. Huber (2019a) and Huber (2019b)
describe how to compute power by simulation and integrate the simulation program in the power
command. The same principles apply to the simulation of CI width or probability of CI width and its
integration in the ciwidth command.

The ciwidth command does not provide precision and sample-size analysis for CIs for proportions.
The width of CIs for proportions depends on the estimates of proportions. Its estimation thus needs
to account for the uncertainty in the proportion estimates. There are no closed-form solutions to
compute the required sample size or width for CIs for proportions that incorporate the probability of
CI width. But we can compute the probability of CI width for a given sample size and target width
using simulation. We can then vary the sample sizes to see which ones correspond to high values
of the probability of CI width for the desired CI width. Let’s do this for the binomial CI for one
proportion.

https://www.stata.com/manuals/pss-3ciwidth.pdf#pss-3ciwidthSyntaxciwidth_options

10 ciwidth usermethod — Add your own methods to the ciwidth command

We can estimate the probability of CI width as the proportion of times the width of the CI computed
from simulated samples is less than or equal to the desired CI width for a given sample size and
probability of success. Our steps are to 1) create a program that simulates the data and computes the
width of the estimated CI; 2) run the program multiple times and compute the probability of CI width;
and 3) add our computations to ciwidth as a new method. We can actually compute the probability
of CI width exactly, without the simulation, for the binomial CI. So we compare our simulation results
with the exact computation in step 4.

Step 1: Program to simulate the data and compute the CI width

We start with a simple program myonepropsim below.

program myonepropsim, rclass
version 18.0 // (or version 18.5 for StataNow)
args n p level
clear
set obs ‘n’
generate byte y = rbinomial(1, ‘p’)
ci proportions y, level(‘level’)
return scalar w = r(ub)-r(lb)

end

Our program requires three arguments: n for sample size, p for proportion estimate, and level for
confidence level. It generates ‘n’ observations for the binary outcome y from a Bernoulli distribution
with a specified probability of success ‘p’. (‘’ refers to the specified values for the arguments.)
It uses the ci proportions command ([R] ci) to estimate the proportion of successes (y==1) and
its binomial CI. It then computes and stores in the return scalar r(w) the estimated CI width—the
difference between the upper and lower CI bounds stored by ci proportions in return scalars r(ub)
and r(lb), respectively.

Let’s run our program. Suppose that we want to simulate 50 Bernoulli observations with a low
success probability of 0.1 and compute the width of the corresponding 95% two-sided binomial CI
for the proportion of successes. Because we randomly generate the data, we use set seed prior to
calling myonepropsim for reproducibility.

. set seed 1234

. myonepropsim 50 0.1 95
Number of observations (_N) was 0, now 50.

Binomial exact
Variable Obs Proportion Std. err. [95% conf. interval]

y 50 .18 .0543323 .0857621 .3143694

.

. return list

scalars:
r(w) = .2286073331759869

From the stored results, the estimated CI width, r(w), is 0.23.

Step 2: Estimating probability of CI width using simulation

Suppose that our target CI width is 0.2. To estimate the probability of CI width, we need to call
our myonepropsim program multiple times and compute the proportion of times the estimated CI
width was less than or equal to our target width of 0.2.

https://www.stata.com/manuals/rci.pdf#rci

ciwidth usermethod — Add your own methods to the ciwidth command 11

Stata has a handy command to run simulations—simulate ([R] simulate).

. set seed 1234

. simulate w=r(w), reps(100): myonepropsim 50 0.1 95

Command: myonepropsim 50 0.1 95
w: r(w)

Simulations (100):10.........20.........30.........40.........50.....
>60.........70.........80.........90.........100 done

. count if w <= 0.2
75

. display r(N)/100

.75

simulate runs myonepropsim 100 times, as specified by simulate’s reps() option, and stores
the computed CI widths in the w variable, as requested by the w=r(w) specification. We then count
the number of observations of w that are less than or equal to 0.2 and estimate the probability of CI
width to be 0.75.

Step 3: Adding probability of CI width computation to ciwidth

Our final step is to combine all of our computations in a single program and integrate it
into the ciwidth command. Following ciwidth’s convention, we call our new program ci-
width cmd myonepropsim.

program ciwidth_cmd_myonepropsim, rclass
version 18.0 // (or version 18.5 for StataNow)
/* parse command arguments and options */
syntax anything(name=p), /// proportion estimate

n(integer) /// sample size
Width(real) /// target CI width
[Level(cilevel) /// confidence level
reps(integer 100) qui]

/* compute probability of CI width using simulation */
display as txt _n "Computing Pr(width) for n=‘n’ and width=‘w’ ..."
‘qui’ simulate w=r(w), reps(‘reps’): myonepropsim ‘n’ ‘p’ ‘level’
quietly count if w <= ‘width’
/* store results */
return scalar Pr_width = r(N)/‘reps’
return scalar level = ‘level’
return scalar N = ‘n’
return scalar width = ‘width’
return scalar p = ‘p’

end

As in A quick example, we use syntax to parse options. We have three new options. The width()
option, with the minimum abbreviation w(), is one of ciwidth’s common options; it specifies the
target CI width. The reps() option is specific to our method—it specifies the number of replications
for the simulation, with the default of 100 replications. Finally, qui suppresses the output from the
simulate command that we display by default.

In addition to options, our program requires that the proportion estimate be specified as a command
argument. We could have specified it as an option, say, proportion(real), but here we wanted to
demonstrate how to handle arguments with user-defined ciwidth methods. Also, official ciwidth
methods typically specify estimates of parameters of interest, such as proportion, as command
arguments, which are specified following the command name.

https://www.stata.com/manuals/rsimulate.pdf#rsimulate
https://www.stata.com/manuals/pss-3ciwidth.pdf#pss-3ciwidthSyntaxciwidth_options

12 ciwidth usermethod — Add your own methods to the ciwidth command

The block after syntax includes our earlier simulate command to which we now pass the content
of the specified command argument and options instead of the hard-coded values. We also compute
the estimate of probability of CI width and store it in the r(Pr width) scalar, following ciwidth’s
naming convention for the common stored results; see Stored results of [PSS-3] ciwidth. We also
store other results in the corresponding return scalars.

Let’s recompute the probability of CI width from Step 2: Estimating probability of CI width using
simulation but now using ciwidth myonepropsim.

. set seed 1234

. ciwidth myonepropsim 0.1, n(50) width(0.2)

Computing Pr(width) for n=50 and width=.2 ...

Command: myonepropsim 50 .1 95
w: r(w)

Simulations (100):10.........20.........30.........40.........50.....
>60.........70.........80.........90.........100 done

Estimated probability of width
Two-sided CI

level N Pr_width width

95 50 .75 .2

We obtain the same estimate of 0.75. We used the default value of the level() option, which is
level(95) or as set by set level; see [R] level.

Notice that our default table now contains the Pr width column. Because we specified both
n() and width(), ciwidth recognized this as the case for computing probability of CI width and
automatically added its column to the default table. However, we are missing the proportion estimate
in our default table. ciwidth is not aware of user-defined command arguments until we specify them
in the initializer.

program ciwidth_cmd_myonepropsim_init, sclass
version 18.0 // (or version 18.5 for StataNow)
sreturn clear
sreturn local prss_argnames = "p"
sreturn local prss_colnames = "p"
sreturn local prss_subtitle = "Two-sided binomial CI"

end

We list the name of the stored result containing the proportion estimate in macro prss argnames
to allow the specification of multiple values for the proportion and in macro prss colnames to add
the proportion column to the default table. We also specify a more descriptive subtitle to be used in
the output.

https://www.stata.com/manuals/pss-3ciwidth.pdf#pss-3ciwidthStoredresults
https://www.stata.com/manuals/pss-3ciwidth.pdf#pss-3ciwidth
https://www.stata.com/manuals/rlevel.pdf#rlevel

ciwidth usermethod — Add your own methods to the ciwidth command 13

If we rerun our previous command (with the qui option to suppress the output from the simulate
command),

. set seed 1234

. ciwidth myonepropsim 0.1, n(50) width(0.2) qui

Computing Pr(width) for n=50 and width=.2 ...

Estimated probability of width
Two-sided binomial CI

level N Pr_width width p

95 50 .75 .2 .1

we will now see the proportion column in the table and the new subtitle.

The estimated probability of CI width of 0.75 is somewhat low. We can specify multiple sample
sizes to find an acceptable value of probability of CI width.

. set seed 1234

. ciwidth myonepropsim 0.1, n(50 70 100) width(0.2) qui

Computing Pr(width) for n=50 and width=.2 ...

Computing Pr(width) for n=70 and width=.2 ...

Computing Pr(width) for n=100 and width=.2 ...

Estimated probability of width
Two-sided binomial CI

level N Pr_width width p

95 50 .75 .2 .1
95 70 1 .2 .1
95 100 1 .2 .1

We can further explore the sample sizes between 50 and 70:

. set seed 1234

. ciwidth myonepropsim 0.1, n(50(5)70) width(0.2) qui

Computing Pr(width) for n=50 and width=.2 ...

Computing Pr(width) for n=55 and width=.2 ...

Computing Pr(width) for n=60 and width=.2 ...

Computing Pr(width) for n=65 and width=.2 ...

Computing Pr(width) for n=70 and width=.2 ...

Estimated probability of width
Two-sided binomial CI

level N Pr_width width p

95 50 .75 .2 .1
95 55 .78 .2 .1
95 60 .97 .2 .1
95 65 .98 .2 .1
95 70 1 .2 .1

14 ciwidth usermethod — Add your own methods to the ciwidth command

Finally, we can compute probability of CI widths for sample sizes between 55 and 60 and plot the
results in addition to the table. We also specify more replications to obtain more precise estimates of
the probability of CI width.

. set seed 1234

. ciwidth myonepropsim 0.1, n(55(1)60) width(0.2) qui reps(1000) table graph

Computing Pr(width) for n=55 and width=.2 ...

Computing Pr(width) for n=56 and width=.2 ...

Computing Pr(width) for n=57 and width=.2 ...

Computing Pr(width) for n=58 and width=.2 ...

Computing Pr(width) for n=59 and width=.2 ...

Computing Pr(width) for n=60 and width=.2 ...

Estimated probability of width
Two-sided binomial CI

level N Pr_width width p

95 55 .801 .2 .1
95 56 .885 .2 .1
95 57 .9 .2 .1
95 58 .874 .2 .1
95 59 .93 .2 .1
95 60 .927 .2 .1

.8

.85

.9

.95

P
ro

ba
bi

lit
y

of
 C

I w
id

th
 (

p w
id

th
)

55 56 57 58 59 60
Sample size (N)

Parameters: 100(1-α) = 95, w = .2, p = .1

Two-sided binomial CI

Estimated probability of width

For example, the sample size of 57 corresponds to the probability of 0.9 that the width of a future
95% two-sided binomial CI for one proportion will not exceed 0.2 given the proportion estimate of
0.1.

The probability of CI width is typically a monotonically increasing function of the sample size.
However, similarly to the power of the binomial test, the probability of CI width for the binomial CI
may not be monotonic with respect to the sample size, as we see in this example, because of the
discrete nature of the binomial distribution.

Of course, because we use simulation, if we rerun ciwidth myonepropsim with a different seed,
we will get different results. The results, however, should be comparable provided the number of
replications is sufficiently large.

https://www.stata.com/manuals/pss-2poweroneproportion.pdf#pss-2poweroneproportionRemarksandexamplesex7

ciwidth usermethod — Add your own methods to the ciwidth command 15

Step 4: Computing exact probability of CI width

We can compute the probability of CI width for the binomial CI more easily by using the exact
formula

Pr(w) =
n∑

k=0

binomialp(n, k, p)× I(wk,n ≤ wtarget)

where binomialp(n, k, p) is the probability of observing k successes in n trials with the success
probability p; wtarget is the target CI width; wk,n is the width of the binomial CI computed given k
observed successes in n trials; and the indicator function

I(wk,n ≤ wtarget) =
{
1, if wk,n ≤ wtarget

0, otherwise

The ciwidth cmd myoneprop program below uses the formula above to compute the probability
of CI width.

program ciwidth_cmd_myoneprop, rclass
version 18.0 // (or version 18.5 for StataNow)
/* parse command arguments and options */
syntax anything(name=p), /// proportion estimate

n(integer) /// sample size
Width(real) /// target CI width
[Level(cilevel)] /// confidence level

/* compute probability of CI width using exact formula */
tempname Pr_width
scalar ‘Pr_width’ = 0
forvalues k = 0/‘n’ {

quietly cii proportions ‘n’ ‘k’, level(‘level’)
if (r(ub)-r(lb) <= ‘width’) {

scalar ‘Pr_width’ = ‘Pr_width’ + binomialp(‘n’,‘k’,‘p’)
}

}
/* store results */
return scalar Pr_width = ‘Pr_width’
return scalar level = ‘level’
return scalar N = ‘n’
return scalar width = ‘width’
return scalar p = ‘p’

end

This program is similar to our earlier ciwidth cmd myonepropsim program but without the reps()
and qui options and using the exact formula instead of simulation to compute the probability of CI
width. Also, instead of using ci proportions, which estimates the binomial CI from the data, we
use its immediate version, cii proportions, which uses the numbers supplied in ‘n’ and ‘k’ to
compute the CI; see [U] 19 Immediate commands for a general discussion of immediate commands.

We followed ciwidth’s naming convention for the ciwidth cmd myoneprop program, so we
can use myoneprop with ciwidth. Let’s compute the exact probability of CI width for sample sizes,
n, between 55 and 60 given the target CI width, wtarget, of 0.2 and probability of success, p, of 0.1,
using the default 95% confidence level.

https://www.stata.com/manuals/u19.pdf#u19Immediatecommands

16 ciwidth usermethod — Add your own methods to the ciwidth command

. ciwidth myoneprop 0.1, n(55(1)60) width(0.2)

Estimated probability of width
Two-sided CI

level N Pr_width width

95 55 .8196 .2
95 56 .897 .2
95 57 .888 .2
95 58 .8785 .2
95 59 .9334 .2
95 60 .9269 .2

Our results are similar to the simulation results from the last table in Step 3: Adding probability of
CI width computation to ciwidth. We can match the exact results even more closely if we use more
replications, say, 10,000, during simulation.

Initializer’s s() return settings

The following s() results may be set by the initializer or parser:
Macros

s(prss samples) onesample for a one-sample CI or twosample for a two-sample CI
s(prss colnames) columns to be added to the default supported columns
s(prss allcolnames) all supported columns
s(prss tabcolnames) columns to be added to the default table
s(prss alltabcolnames) all columns to be displayed in the default table
s(prss collabels) labels for the specified columns
s(prss colformats) formats for the specified columns
s(prss colwidths) widths for the specified columns
s(prss colgrlabels) labels to be used to label columns on the graph
s(prss colgrsymbols) symbols to be used to label columns on the graph
s(prss argnames) column names containing command arguments
s(prss title) method-specific title
s(prss subtitle) subtitle

References
Huber, C. 2019a. Calculating power using Monte Carlo simulations, part 1: The basics. The Stata Blog: Not Elsewhere

Classified. https://blog.stata.com/2019/01/10/calculating-power-using-monte-carlo-simulations-part-1-the-basics/.

. 2019b. Calculating power using Monte Carlo simulations, part 2: Running your simulation using power.
The Stata Blog: Not Elsewhere Classified. https://blog.stata.com/2019/01/29/calculating-power-using-monte-carlo-
simulations-part-2-running-your-simulation-using-power/.

Also see
[PSS-3] ciwidth — Precision and sample-size analysis for CIs

[PSS-3] Intro (ciwidth) — Introduction to precision and sample-size analysis for confidence intervals

[PSS-5] Glossary
Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and
Stata Press are registered trademarks with the World Intellectual Property Organization
of the United Nations. StataNow and NetCourseNow are trademarks of StataCorp
LLC. Other brand and product names are registered trademarks or trademarks of their
respective companies. Copyright c© 1985–2023 StataCorp LLC, College Station, TX,
USA. All rights reserved.

®

For suggested citations, see the FAQ on citing Stata documentation.

https://blog.stata.com/2019/01/10/calculating-power-using-monte-carlo-simulations-part-1-the-basics/
https://blog.stata.com/2019/01/29/calculating-power-using-monte-carlo-simulations-part-2-running-your-simulation-using-power/
https://blog.stata.com/2019/01/29/calculating-power-using-monte-carlo-simulations-part-2-running-your-simulation-using-power/
https://www.stata.com/manuals/pss-3ciwidth.pdf#pss-3ciwidth
https://www.stata.com/manuals/pss-3introciwidth.pdf#pss-3Intro(ciwidth)
https://www.stata.com/manuals/pss-5glossary.pdf#pss-5Glossary
https://www.stata.com/support/faqs/resources/citing-software-documentation-faqs/

