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Power and sample-size analysis

Power and sample-size (PSS) analysis is a key component in designing a statistical study that uses
hypothesis testing for inference. It investigates the optimal allocation of study resources to increase
the likelihood of the successful achievement of a study objective.

How many subjects do we need in a study to achieve its research objectives? A study with too
few subjects may have a low chance of detecting an important effect, and a study with too many
subjects may offer very little gain and will thus waste time and resources. What are the chances of
achieving the objectives of a study given available resources? Or what is the smallest effect that can
be detected in a study given available resources? PSS analysis helps answer all of these questions. In
what follows, when we refer to PSS analysis, we imply any of these goals.

We consider prospective PSS analysis (PSS analysis of a future study) as opposed to retrospective
PSS analysis (analysis of a study that has already happened).

In the context of PSS analysis, hypothesis testing is the inferential method used to evaluate research
objectives of a study. In this manual, we concentrate on the PSS analysis for hypothesis tests that
include one-sample and two-sample tests of means, variances, proportions, correlations, and more.
See [PSS-2] power for a full list of methods.

Before we discuss the components of PSS analysis, let us first revisit the basics of hypothesis
testing.

Hypothesis testing

Recall that the goal of hypothesis testing is to evaluate the validity of a hypothesis, a statement
about a population parameter of interest θ, a target parameter, based on a sample from the population.
For simplicity, we consider a simple hypothesis test comparing a population parameter θ with 0.
The two complementary hypotheses are considered: the null hypothesis H0: θ = 0, which typically
corresponds to the case of “no effect”, and the alternative hypothesis Ha: θ 6= 0, which typically
states that there is “an effect”. An effect can be a decrease in blood pressure after taking a new drug,
an increase in SAT scores after taking a class, an increase in crop yield after using a new fertilizer, a
decrease in the proportion of defective items after the installation of new equipment, and so on.

The data are collected to obtain evidence against the postulated null hypothesis in favor of the
alternative hypothesis, and hypothesis testing is used to evaluate the obtained data sample. The value
of a test statistic (a function of the sample that does not depend on any unknown parameters) obtained
from the collected sample is used to determine whether the null hypothesis can be rejected. If that
value belongs to a rejection or critical region (a set of sample values for which the null hypothesis will
be rejected) or, equivalently, falls above (or below) the critical values (the boundaries of the rejection
region), then the null is rejected. If that value belongs to an acceptance region (the complement of
the rejection region), then the null is not rejected. A critical region is determined by a hypothesis test.

A hypothesis test can make one of two types of errors: a type I error of incorrectly rejecting the
null hypothesis and a type II error of incorrectly accepting the null hypothesis. The probability of a
type I error is Pr(reject H0|H0 is true), and the probability of a type II error is commonly denoted
as β = Pr(fail to reject H0|H0 is false).

A power function is a function of θ defined as the probability that the observed sample belongs
to the rejection region of a test for a given parameter θ. A power function unifies the two error
probabilities. A good test has a power function close to 0 when the population parameter belongs
to the parameter’s null space (θ = 0 in our example) and close to 1 when the population parameter
belongs to the alternative space (θ 6= 0 in our example). In a search for a good test, it is impossible

https://www.stata.com/manuals/pss-2power.pdf#pss-2power


Intro (power) — Introduction to power and sample-size analysis for hypothesis tests 3

to minimize both error probabilities for a fixed sample size. Instead, the type-I-error probability is
fixed at a small level, and the best test is chosen based on the smallest type-II-error probability.

An upper bound for a type-I-error probability is a significance level, commonly denoted as α, a
value between 0 and 1 inclusively. Many tests achieve their significance level—that is, their type-I-error
probability equals α, Pr(reject H0|H0 is true) = α—for any parameter in the null space. For other
tests, α is only an upper bound; see example 6 in [PSS-2] power oneproportion for an example of a
test for which the nominal significance level is not achieved. In what follows, we will use the terms
“significance level” and “type-I-error probability” interchangeably, making the distinction between
them only when necessary.

Typically, researchers control the type I error by setting the significance level to a small value
such as 0.01 or 0.05. This is done to ensure that the chances of making a more serious error are
very small. With this in mind, the null hypothesis is usually formulated in a way to guard against
what a researcher considers to be the most costly or undesirable outcome. For example, if we were
to use hypothesis testing to determine whether a person is guilty of a crime, we would choose the
null hypothesis to correspond to the person being not guilty to minimize the chances of sending an
innocent person to prison.

The power of a test is the probability of correctly rejecting the null hypothesis when the null
hypothesis is false. Power is inversely related to the probability of a type II error as π = 1 − β =
Pr(reject H0|H0 is false). Minimizing the type-II-error probability is equivalent to maximizing power.
The notion of power is more commonly used in PSS analysis than is the notion of a type-II-error
probability. Typical values for power in PSS analysis are 0.8, 0.9, or higher depending on the study
objective.

Hypothesis tests are subdivided into one sided and two sided. A one-sided or directional test
asserts that the target parameter is large (an upper one-sided test H: θ > θ0) or small (H: θ ≤ θ0),
whereas a two-sided or nondirectional test asserts that the target parameter is either large or small
(H: θ 6= θ0). One-sided tests have higher power than two-sided tests. They should be used in place
of a two-sided test only if the effect in the direction opposite to the tested direction is irrelevant; see
One-sided test versus two-sided test below for details.

Another concept important for hypothesis testing is that of a p-value or observed level of significance.
P -value is a probability of obtaining a test statistic as extreme or more extreme as the one observed
in a sample assuming the null hypothesis is true. It can also be viewed as the smallest level of α
that leads to the rejection of the null hypothesis. For example, if the p-value is less than 0.05, a test
is considered to reject the null hypothesis at the 5% significance level.

For more information about hypothesis testing, see, for example, Casella and Berger (2002).

Next we review concepts specific to PSS analysis.

Components of PSS analysis

The general goal of PSS analysis is to help plan a study such that the chosen statistical method has
high power to detect an effect of interest if the effect exists. For example, PSS analysis is commonly
used to determine the size of the sample needed for the chosen statistical test to have adequate power
to detect an effect of a specified magnitude at a prespecified significance level given fixed values of
other study parameters. We will use the phrase “detect an effect” to generally mean that the collected
data will support the alternative hypothesis. For example, detecting an effect may be detecting that
the means of two groups differ, or that there is an association between the probability of a disease
and an exposure factor, or that there is a nonzero correlation between two measurements.

https://www.stata.com/manuals/pss-2poweroneproportion.pdf#pss-2poweroneproportionRemarksandexamplesex6
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The general goal of PSS analysis can be achieved in several ways. You can

• compute sample size directly given specified significance level, power, effect size, and other
study parameters;

• evaluate the power of a study for a range of sample sizes or effect sizes for a given significance
level and fixed values of other study parameters;

• evaluate the magnitudes of an effect that can be detected with reasonable power for specific
sample sizes given a significance level and other study parameters;

• evaluate the sensitivity of the power or sample-size requirements to various study parameters.

The main components of PSS analysis are

• study design;

• statistical method;

• significance level, α;

• power, 1− β;

• a magnitude of an effect of interest or clinically meaningful difference, often expressed as
an effect size, δ;

• sample size, N .

Below we describe each of the main components of PSS analysis in more detail.

Study design

A well-designed statistical study has a carefully chosen study design and a clearly specified
research objective that can be formulated as a statistical hypothesis. A study can be observational,
where subjects are followed in time, such as a cross-sectional study, or it can be experimental, where
subjects are assigned a certain procedure or treatment, such as a randomized, controlled clinical trial.
A study can involve one, two, or more samples. A study can be prospective, where the outcomes are
observed given the exposures, such as a cohort study, or it can be retrospective, where the exposures
are observed given the outcomes, such as a case–control study. A study can also use matching, where
subjects are grouped based on selected characteristics such as age or race. A common example of
matching is a paired study, consisting of pairs of observations that share selected characteristics.

Statistical method

A well-designed statistical study also has well-defined methods of analysis to be used to evaluate
the objective of interest. For example, a comparison of two independent populations may involve
an independent two-sample t test of means or a two-sample χ2 test of variances, and so on. PSS
computations are specific to the chosen statistical method and design. For example, the power of a
balanced- or equal-allocation design is typically higher than the power of the corresponding unbalanced
design.

Significance level

A significance level α is an upper bound for the probability of a type I error. With a slight abuse
of terminology and notation, we will use the terms “significance level” and “type-I-error probability”
interchangeably, and we will also use α to denote the probability of a type I error. When the two
are different, such as for tests with discrete sampling distributions of test statistics, we will make a
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distinction between them. In other words, unless stated otherwise, we will assume a size-α test, for
which Pr(rejectH0|H0 is true) = α for any θ in the null space, as opposed to a level-α test, for
which Pr(reject H0|H0 is true) ≤ α for any θ in the null space.

As we mentioned earlier, researchers typically set the significance level to a small value such as
0.01 or 0.05 to protect the null hypothesis, which usually represents a state for which an incorrect
decision is more costly.

Power is an increasing function of the significance level.

Power

The power of a test is the probability of correctly rejecting the null hypothesis when the null
hypothesis is false. That is, π = 1− β = Pr(reject H0|H0 is false). Increasing the power of a test
decreases the probability of a type II error, so a test with high power is preferred. Common choices
for power are 90% and 80%, depending on the study objective.

We consider prospective power, which is the power of a future study.

Clinically meaningful difference and effect size

Clinically meaningful difference and effect size represent the magnitude of an effect of interest.
In the context of PSS analysis, they represent the magnitude of the effect of interest to be detected by
a test with a specified power. They can be viewed as a measure of how far the alternative hypothesis
is from the null hypothesis. Their values typically represent the smallest effect that is of clinical
significance or the hypothesized population effect size.

The interpretation of “clinically meaningful” is determined by the researcher and will usually
vary from study to study. For example, in clinical trials, if no prior knowledge is available about
the performance of the considered clinical procedure, then a standardized effect size (adjusted for
standard deviation) between 0.25 and 0.5 may be considered clinically meaningful.

The definition of effect size is specific to the study design, analysis endpoint, and employed statistical
model and test. For example, for a comparison of two independent proportions, an effect size may
be defined as the difference between two proportions, the ratio of the two proportions, or the odds
ratio. Effect sizes also vary in magnitude across studies: a treatment effect of 1% corresponding to an
increase in mortality may be clinically meaningful, whereas a treatment effect of 10% corresponding
to a decrease in a circumference of an ankle affected by edema may be of little importance. Effect
size is usually defined in such a way that power is an increasing function of it (or its absolute value).

More generally, in PSS analysis, effect size summarizes the disparity between the alternative and null
sampling distributions (sampling distributions under the alternative hypothesis and the null hypothesis,
respectively) of a test statistic. The larger the overlap between the two distributions, the smaller the
effect size and the more difficult it is to reject the null hypothesis, and thus there is less power to
detect an effect.

For example, consider a z test for a comparison of a mean µ with 0 from a population with a
known standard deviation σ. The null hypothesis is H0 : µ = 0, and the alternative hypothesis is
Ha: µ 6= 0. The test statistic is a sample mean or sample average. It has a normal distribution with
mean 0 and standard deviation σ as its null sampling distribution, and it has a normal distribution
with mean µ different from 0 and standard deviation σ as its alternative sampling distribution. The
overlap between these distributions is determined by the mean difference µ − 0 = µ and standard
deviation σ. The larger µ or, more precisely, the larger its absolute value, the larger the difference
between the two populations, and thus the smaller the overlap and the higher the power to detect the
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differences µ. The larger the standard deviation σ, the more overlap between the two distributions
and the lower the power to detect the difference. Instead of being viewed as a function of µ and
σ, power can be viewed as a function of their combination expressed as the standardized difference
δ = (µ− 0)/σ. Then, the larger |δ|, the larger the power; the smaller |δ|, the smaller the power. The
effect size is then the standardized difference δ.

To read more about effect sizes in Stata, see [R] esize, although PSS analysis may sometimes use
different definitions of an effect size.

Sample size

Sample size is usually the main component of interest in PSS analysis. The sample size required to
successfully achieve the objective of a study is determined given a specified significance level, power,
effect size, and other study parameters. The larger the significance level, the smaller the sample size,
with everything else being equal. The higher the power, the larger the sample size. The larger the
effect size, the smaller the sample size.

When you compute sample size, the actual power (power corresponding to the obtained sample
size) will most likely be different from the power you requested because sample size is an integer.
In the computation, the resulting fractional sample size that corresponds to the requested power
is usually rounded to the nearest integer. To be conservative, the sample size is rounded up to
ensure that the actual power is at least as large as the requested power. For multiple-sample designs,
fractional sample sizes may arise when you specify sample size to compute power or effect size. For
example, to accommodate an odd total sample size of, say, 51 in a balanced two-sample design, each
individual sample size must be 25.5. To be conservative, sample sizes are rounded down on input.
The actual sample sizes in our example would be 25, 25, and 50. See Fractional sample sizes in
[PSS-4] Unbalanced designs for details about sample-size rounding.

For multiple samples, the allocation of subjects between groups also affects power. A balanced- or
equal-allocation design—a design with equal numbers of subjects in each sample or group—generally
has higher power than the corresponding unbalanced- or unequal-allocation design—a design with
different numbers of subjects in each sample or group.

One-sided test versus two-sided test

Among other things that affect power is whether the employed test is directional (upper or lower
one sided) or nondirectional (two sided). One-sided or one-tailed tests are more powerful than the
corresponding two-sided or two-tailed tests. It may be tempting to choose a one-sided test over a
two-sided test based on this fact. Despite having higher power, one-sided tests are generally not as
common as two-sided tests. The direction of the effect, whether the effect is larger or smaller than
a hypothesized value, is unknown in many applications, which requires the use of a two-sided test.
The use of a one-sided test in applications in which the direction of the effect may be known is
still controversial. The use of a one-sided test precludes the possibility of detecting an effect in the
opposite direction, which may be undesirable in some studies. You should exercise caution when you
decide to use a one-sided test because you will not be able to rule out the effect in the opposite
direction if one were to happen. The results from a two-sided test have stronger justification.

https://www.stata.com/manuals/resize.pdf#resize
https://www.stata.com/manuals/pss-4unbalanceddesigns.pdf#pss-4UnbalanceddesignsRemarksandexamplesFractionalsamplesizes
https://www.stata.com/manuals/pss-4unbalanceddesigns.pdf#pss-4Unbalanceddesigns


Intro (power) — Introduction to power and sample-size analysis for hypothesis tests 7

Another consideration: Dropout

During the planning stage of a study, another important consideration is whether the data collection
effort may result in missing observations. In clinical studies, the common term for this is dropout,
when subjects fail to complete the study for reasons unrelated to study objectives.

If dropout is anticipated, its rate must be taken into consideration when determining the required
sample size or computing other parameters. For example, if subjects are anticipated to drop out from
a study with a rate of Rd, an ad hoc way to inflate the estimated sample size n is as follows:
nd = n/(1−Rd). Similarly, the input sample size must be adjusted as n = nd(1−Rd), where nd
is the anticipated sample size.

Survival data

The prominent feature of survival data is that the outcome is the time from an origin to the
occurrence of a given event (failure), often referred to as the analysis time. Analyses of such data
use the information from all subjects in a study, both those who experience an event by the end
of the study and those who do not. However, inference about the survival experience of subjects
is based on the event times and therefore depends on the number of events observed in a study.
Indeed, if none of the subjects fails in a study, then the survival rate cannot be estimated and survivor
functions of subjects from different groups cannot be compared. Therefore, power depends on the
number of events observed in a study and not directly on the number of subjects recruited to the
study. As a result, to obtain the estimate of the required number of subjects, the probability that a
subject experiences an event during the course of the study needs to be estimated in addition to the
required number of events. This distinguishes sample-size determination for survival studies from that
for other studies in which the endpoint is not measured as a time to failure.

All the above leads us to consider the following two types of survival studies. The first type (a
type I study) is a study in which all subjects experience an event by the end of the study (no censoring),
and the second type (a type II study) is a study that terminates after a fixed period regardless of
whether all subjects experienced an event by that time. For a type II study, subjects who did not
experience an event at the end of the study are known to be right-censored. For a type I study, when
all subjects fail by the end of the study, the estimate of the probability of a failure in a study is
one and the required number of subjects is equal to the required number of failures. For a type II
study, the probability of a failure needs to be estimated and therefore various aspects that affect this
probability (and usually do not come into play at the analysis stage) must be taken into account for
the computation of the sample size.

Under the assumption of random censoring (Lachin 2011, 431; Lawless 2003, 52; Chow and Liu
2014, 391), the type of censoring pattern is irrelevant to the analysis of survival data in which the
goal is to make inferences about the survival distribution of subjects. It becomes important, however,
for sample-size determination because the probability that a subject experiences an event in a study
depends on the censoring distribution. We consider the following two types of random censoring:
administrative censoring and loss to follow-up.

Under administrative censoring, a subject is known to have experienced either of the two outcomes
at the end of a study: survival or failure. The probability of a subject failing in a study depends on
the duration of the study. Often in practice, subjects may withdraw from a study, say, because of
severe side effects from a treatment or may be lost to follow-up because of moving to a different
location. Here the information about the outcome that subject would have experienced at the end of
the study had he completed the course of the study is unavailable, and the probability of experiencing
an event by the end of the study is affected by the process governing withdrawal of subjects from
the study. In the literature, this type of censoring is often referred to as subject loss to follow-up,
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subject withdrawal, or sometimes subject dropout (Freedman 1982, Machin and Campbell 2005).
Generally, great care must be taken when using this terminology because it may have slightly different
meanings in different contexts. power logrank and power cox apply a conservative adjustment to
the estimate of the sample size for withdrawal. power exponential assumes that losses to follow-up
are exponentially distributed.

Another important component of sample-size and power determination that affects the estimate of
the probability of a failure is the pattern of accrual of subjects into the study. The duration of a study
is often divided into two phases: an accrual phase, during which subjects are recruited to the study,
and a follow-up phase, during which subjects are followed up until the end of the study and no new
subjects enter the study. For a fixed-duration study, fast accrual increases the average analysis time
(average follow-up time) and increases the chance of a subject failing in a study, whereas slow accrual
decreases the average analysis time and consequently decreases this probability. power logrank and
power exponential provide facilities to account for uniform accrual, and for power exponential
only, truncated exponential accrual.

All sample-size formulas used by power’s survival methods rely on the proportional-hazards
assumption, that is, the assumption that the hazard ratio does not depend on time. See the documentation
entry of each subcommand for the additional assumptions imposed by the methods it uses. In the
case when the proportional-hazards assumption is suspect, or in the presence of other complexities
associated with the nature of the trial (for example, lagged effect of a treatment, more than two
treatment groups, clustered data) and with the behavior of participants (for example, noncompliance
of subjects with the assigned treatment, competing risks), one may consider obtaining required
sample size or power by simulation. Feiveson (2002) demonstrates an example of such simulation
for clustered survival data. Also see Royston (2012) and Crowther and Lambert (2012) for ways of
simulating complicated survival data. Barthel et al. (2006); Barthel, Royston, and Babiker (2005);
Royston and Babiker (2002); Barthel, Royston, and Parmar (2009); and Royston and Barthel (2010)
present sample-size and power computation for multiarm trials under more flexible design conditions.

Sensitivity analysis

Because of limited resources, it may not always be feasible to conduct a study under the original
ideal specification. In this case, you may vary study parameters to find an appropriate balance
between the desired detectable effect, sample size, available resources, and an objective of the study.
For example, a researcher may decide to increase the detectable effect size to decrease the required
sample size, or, rarely, to lower the desired power of the test. In some situations, it may not be
possible to reduce the required sample size, in which case more resources must be acquired before
the study can be conducted.

Power is a complicated function of all the components we described in the previous section—none
of the components can be viewed in isolation. For this reason, it is important to perform sensitivity
analysis, which investigates power for various specifications of study parameters, and refine the
sample-size requirements based on the findings prior to conducting a study. Tables of power values
(see [PSS-2] power, table) and graphs of power curves (see [PSS-2] power, graph) may be useful for
this purpose.

An example of PSS analysis in Stata

Consider a study of math scores from the SAT exam. Investigators would like to test whether a
new coaching program increases the average SAT math score by 20 points compared with the national
average in a given year of 514. They do not anticipate the standard deviation of the scores to be
larger than the national value of 117. Investigators are planning to test the differences between scores

https://www.stata.com/manuals/pss-2powerlogrank.pdf#pss-2powerlogrank
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https://www.stata.com/manuals/pss-2powertable.pdf#pss-2power,table
https://www.stata.com/manuals/pss-2powergraph.pdf#pss-2power,graph
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by using a one-sample t test. Prior to conducting the study, investigators would like to estimate the
sample size required to detect the anticipated difference by using a 5%-level two-sided test with 90%
power. We can use the power onemean command to estimate the sample size for this study; see
[PSS-2] power onemean for more examples.

Below we demonstrate PSS analysis of this example interactively, by typing the commands; see
[PSS-2] GUI (power) for point-and-click analysis of this example.

We specify the reference or null mean value of 514 and the comparison or alternative value of 534
as command arguments following the command name. The values of standard deviation and power
are specified in the corresponding sd() and power() options. power onemean assumes a 5%-level
two-sided test, so we do not need to specify any additional options.

. power onemean 514 534, sd(117) power(0.9)

Performing iteration ...

Estimated sample size for a one-sample mean test
t test
H0: m = m0 versus Ha: m != m0

Study parameters:

alpha = 0.0500
power = 0.9000
delta = 0.1709

m0 = 514.0000
ma = 534.0000
sd = 117.0000

Estimated sample size:

N = 362

The estimated required sample size is 362.

Investigators do not have enough resources to enroll that many subjects. They would like to estimate
the power corresponding to a smaller sample of 300 subjects. To compute power, we replace the
power(0.9) option with the n(300) option in the above command.

. power onemean 514 534, sd(117) n(300)

Estimated power for a one-sample mean test
t test
H0: m = m0 versus Ha: m != m0

Study parameters:

alpha = 0.0500
N = 300

delta = 0.1709
m0 = 514.0000
ma = 534.0000
sd = 117.0000

Estimated power:

power = 0.8392

For a smaller sample of 300 subjects, the power decreases to 84%.

Investigators would also like to estimate the minimum detectable difference between the scores
given a sample of 300 subjects and a power of 90%. To compute the standardized difference between
the scores, or effect size, we specify both the power in the power() option and the sample size in
the n() option.

https://www.stata.com/manuals/pss-2poweronemean.pdf#pss-2poweronemean
https://www.stata.com/manuals/pss-2guipower.pdf#pss-2GUI(power)
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. power onemean 514, sd(117) power(0.9) n(300)

Performing iteration ...

Estimated target mean for a one-sample mean test
t test
H0: m = m0 versus Ha: m != m0; ma > m0

Study parameters:

alpha = 0.0500
power = 0.9000

N = 300
m0 = 514.0000
sd = 117.0000

Estimated effect size and target mean:

delta = 0.1878
ma = 535.9671

The minimum detectable standardized difference given the requested power and sample size is 0.19,
which corresponds to an average math score of roughly 536 and a difference between the scores of
22.

Continuing their analysis, investigators want to assess the impact of different sample sizes and
score differences on power. They wish to estimate power for a range of alternative mean scores
between 530 and 550 with an increment of 5 and a range of sample sizes between 200 and 300 with
an increment of 10. They would like to see results on a graph.

We specify the range of alternative means as numlist (see [U] 11.1.8 numlist) in parentheses as
the second command argument. We specify the range of sample sizes as a numlist in the n() option.
We request a graph by specifying the graph option.

. power onemean 514 (535(5)550), sd(117) n(200(10)300) graph
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P
ow
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200 220 240 260 280 300
Sample size (N)

535
540
545
550

Alternative mean (µa)

Parameters: α = .05, µ0 = 514, σ = 117

t test
H0: µ = µ0  versus  Ha: µ ≠ µ0

Estimated power for a one-sample mean test

The default graph plots the estimated power on the y axis and the requested sample size on the x
axis. A separate curve is plotted for each of the specified alternative means. Power increases as the
sample size increases or as the alternative mean increases. For example, for a sample of 220 subjects
and an alternative mean of 535, the power is approximately 75%; and for an alternative mean of 550,
the power is nearly 1. For a sample of 300 and an alternative mean of 535, the power increases to
87%. Investigators may now determine a combination of an alternative mean and a sample size that
would satisfy their study objective and available resources.

https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
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If desired, we can also display the estimated power values in a table by additionally specifying
the table option:

. power onemean 514 (530(5)550), sd(117) n(200(10)300) graph table
(output omitted )

The power command performs PSS analysis for a number of hypothesis tests for continuous, binary,
and survival outcomes; see [PSS-2] power and method-specific entries for more examples. Also, in
the absence of readily available PSS methods, consider performing PSS analysis by simulation; see, for
example, Huber (2019a), Feiveson (2002), and Hooper (2013) for examples of how you can do this
in Stata. You can also add your own methods to the power command as described in [PSS-2] power
usermethod; also see Huber (2019b).

Video example

A conceptual introduction to power and sample-size calculations
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