Description

matrix score creates newvar ${ }_{j}=\mathbf{x}_{j} \mathbf{b}^{\prime}$ (\mathbf{b} being a row vector), where \mathbf{x}_{j} is the row vector of values of the variables specified by the column names of \mathbf{b}. The name _cons is treated as a variable equal to 1 .

Syntax

```
matrix score [type] newvar \(=\mathbf{b}[\) if \(][\) in \(]\)
    [, equation(\#\#|eqname) missval(\#) replace forcezero ]
```

where \mathbf{b} is a $1 \times p$ matrix.

Options

equation(\#\#|eqname) specifies the equation-by either number or name-for selecting coefficients from b to use in scoring. See [U] 14.2 Row and column names and [P] matrix rownames for more on equation labels with matrices.
missval(\#) specifies the value to be assumed if any values are missing from the variables referred to by the coefficient vector. By default, this value is taken to be missing (.), and any missing value among the variables produces a missing score.
replace specifies that newvar already exists. Here observations not included by if exp and in range are left unchanged; that is, they are not changed to missing. Be warned that replace does not promote the storage type of the existing variable; if the variable was stored as an int, the calculated scores would be truncated to integers when stored.
forcezero specifies that, should a variable described by the column names of \mathbf{b} not exist, the calculation treat the missing variable as if it did exist and was equal to zero for all observations. It contributes nothing to the summation. By default, a missing variable would produce an error message.

Remarks and examples

stata.com
Scoring refers to forming linear combinations of variables in the data with respect to a coefficient vector. For instance, let's create and then consider the vector coefs:

```
. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. quietly regress price weight mpg
. matrix coefs = e(b)
. matrix list coefs
coefs[1,3]
\begin{tabular}{lrrr} 
& weight & mpg & -cons \\
y1 & 1.7465592 & -49.512221 & 1946.0687
\end{tabular}
```

Scoring the data with this vector would create a new variable equal to the linear combination

$$
1.7465592 \text { weight }-49.512221 \mathrm{mpg}+1946.0687
$$

The vector is interpreted as coefficients; the corresponding names of the variables are obtained from the column names (row names if coefs were a column vector). To form this linear combination, we type

```
. matrix score lc = coefs
```

. summarize lc

Variable	Obs	Mean	Std. dev.	Min	Max
lc	74	6165.257	1597.606	3406.46	9805.269

If the coefficient vector has equation names, matrix score with the eq() option selects the appropriate coefficients for scoring. eq(\#1) is assumed if no eq() option is specified.

```
. quietly sureg (price weight mpg) (displacement weight)
. matrix coefs = e(b)
. matrix list coefs
coefs[1,5]
\begin{tabular}{rrrrrr} 
& price: & price: & price: & displacem \(\sim\) t: & displacem \(\sim\) t: \\
& weight & mpg & cons & weight & -cons \\
y1 & 1.7358275 & -51.298248 & 2016.5101 & .10574552 & -121.99702
\end{tabular}
. matrix score lcnoeq = coefs
. matrix score lca = coefs , eq(price)
. matrix score lc1 = coefs , eq(#1)
. matrix score lcb = coefs , eq(displacement)
. matrix score lc2 = coefs , eq(#2)
. summarize lcnoeq lca lc1 lcb lc2
\begin{tabular}{r|rrrrr} 
Variable & Obs & Mean & Std. dev. & Min & Max \\
\hline lcnoeq & 74 & 6165.257 & 1598.264 & 3396.859 & 9802.336 \\
lca & 74 & 6165.257 & 1598.264 & 3396.859 & 9802.336 \\
lc1 & 74 & 6165.257 & 1598.264 & 3396.859 & 9802.336 \\
lcb & 74 & 197.2973 & 82.18474 & 64.1151 & 389.8113 \\
lc2 & 74 & 197.2973 & 82.18474 & 64.1151 & 389.8113
\end{tabular}
```


- Technical note

If the same equation name is scattered in different sections of the coefficient vector, the results may not be what you expect.

```
. matrix list bad
bad[1,5]
\begin{tabular}{|c|c|c|c|c|c|}
\hline & price: & price: & displacem \({ }^{\sim}\) t & price & displacem \({ }^{\text {t }}\) \\
\hline & weight & mpg & weight & _cons & _cons \\
\hline y1 & 1.7358275 & -51.298248 & . 10574552 & 2016.5101 & -121.99702 \\
\hline
\end{tabular}
. matrix score badnoeq = bad
. matrix score bada = bad , eq(price)
. matrix score bad1 = bad , eq(#1)
. matrix score badb = bad , eq(displacement)
. matrix score bad2 = bad , eq(#2)
. matrix score bad3 = bad , eq(#3)
```

```
. matrix score bad4 = bad , eq(#4)
```

. summarize bad*

Variable	Obs	Mean	Std. dev.	Min	Max	
badnoeq	74	4148.747	1598.264	1380.349	7785.826	
bada	74	4148.747	1598.264	1380.349	7785.826	
bad1	74	4148.747	1598.264	1380.349	7785.826	
badb	74	319.2943	82.18474	186.1121	511.8083	
bad2	74	319.2943	82.18474	186.1121	511.8083	
bad3	74	2016.51		0	2016.51	2016.51
bad4	74	-121.997	0	-121.997	-121.997	

You do not need to worry about a bad matrix score when working with coefficient vectors created by Stata estimation commands. These commands always return coefficient vectors that are appropriately ordered according to equation names.

Also see

[P] matrix - Introduction to matrix commands

[U] 14 Matrix expressions

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Organization of the United Nations. StataNow and NetCourseNow are trademarks of StataCorp LLC. Other brand and product names are registered trademarks or trademarks of their respective companies. Copyright (c) 1985-2023 StataCorp LLC, College Station, TX,
 USA. All rights reserved.

For suggested citations, see the FAQ on citing Stata documentation.

