
Title stata.com

matrix define — Matrix definition, operators, and functions

Description Menu Syntax Remarks and examples Also see

Description
matrix define performs matrix computations. The word define may be omitted.

matrix input provides a method for inputting matrices. The word input may be omitted (see
the discussion that follows).

For an introduction and overview of matrices in Stata, see [U] 14 Matrix expressions.

See [M-2] exp for matrix expressions in Mata.

Menu
matrix define

Data > Matrices, ado language > Define matrix from expression

matrix input

Data > Matrices, ado language > Input matrix by hand

Syntax
Perform matrix computations

matrix
[
define

]
matname = matrix expression

Input matrices

matrix
[
input

]
matname = (#

[
,# . . .

] [
\ #

[
, # . . .

] [
\
[
. . .
]]]

)

Remarks and examples stata.com

Remarks are presented under the following headings:

Introduction
Inputting matrices by hand
Matrix operators
Matrix functions returning matrices
Matrix functions returning scalars
Subscripting and element-by-element definition
Name conflicts in expressions (namespaces)
Macro functions

1

http://stata.com
https://www.stata.com/manuals/u14.pdf#u14Matrixexpressions
https://www.stata.com/manuals/m-2exp.pdf#m-2exp
http://stata.com

2 matrix define — Matrix definition, operators, and functions

Introduction

matrix define calculates matrix results from other matrices. For instance,

. matrix define D = A + B + C

creates D containing the sum of A, B, and C. The word define may be omitted,

. matrix D = A + B + C

and the command may be further abbreviated:

. mat D=A+B+C

The same matrix may appear on both the left and the right of the equal sign in all contexts, and Stata
will not become confused. Complicated matrix expressions are allowed.

With matrix input, you define the matrix elements rowwise; commas are used to separate
elements within a row, and backslashes are used to separate the rows. Spacing does not matter.

. matrix input A = (1,2\3,4)

The above would also work if you omitted the input subcommand.

. matrix A = (1,2\3,4)

There is a subtle difference: the first method uses the matrix input command, and the second uses
the matrix expression parser. Omitting input allows expressions in the command. For instance,

. matrix X = (1+1, 2*3/4 \ 5/2, 3)

is understood but

. matrix input X = (1+1, 2*3/4 \ 5/2, 3)

would produce an error.

matrix input, however, has two advantages. First, it allows input of large matrices. (The
expression parser is limited because it must “compile” the expressions and, if the result is too long,
will produce an error.) Second, matrix input allows you to omit the commas.

Inputting matrices by hand

Before turning to operations on matrices, let’s examine how matrices are created. Typically, at
least in programming situations, you obtain matrices by accessing one of Stata’s internal matrices
(e(b) and e(V); see [P] matrix get) or by accumulating it from the data (see [P] matrix accum).
Nevertheless, the easiest way to create a matrix is to enter it using matrix input—this may not be
the normal way to create matrices, but it is useful for performing small, experimental calculations.

Example 1

To create the matrix

A =

(
1 2
3 4

)
type

. matrix A = (1,2 \ 3,4)

https://www.stata.com/manuals/pmatrixget.pdf#pmatrixget
https://www.stata.com/manuals/pmatrixaccum.pdf#pmatrixaccum

matrix define — Matrix definition, operators, and functions 3

The spacing does not matter. To define the matrix

B =

(
1 2 3
4 . 6

)
type

. matrix B = (1,2,3 \ 4,.,6)

To define the matrix

C =

 1 2
3 4
5 6

type

. matrix C = (1,2 \ 3,4 \ 5,6)

If you need more than one line, and you are working interactively, just keep typing; Stata will wrap
the line around the screen. If you are working in a do- or ado-file, see [U] 16.1.3 Long lines in
do-files.

To create vectors, you enter the elements, separating them by commas or backslashes. To create
the row vector

D = (1 2 3)

type

. matrix D = (1,2,3)

To create the column vector

E =

 1
2
3

type

. matrix E = (1\2\3)

To create the 1× 1 matrix F = (2), type

. matrix F = (2)

In these examples, we have omitted the input subcommand. They would work either way.

Matrix operators

In what follows, uppercase letters A, B, . . . stand for matrix names. The matrix operators are

+, meaning addition. matrix C=A+B, A: r × c and B: r × c, creates C: r × c containing the
elementwise addition A + B. An error is issued if the matrices are not conformable. Row and
column names are obtained from B.

-, meaning subtraction or negation. matrix C=A-B, A: r× c and B: r× c, creates C containing
the elementwise subtraction A−B. An error is issued if the matrices are not conformable. matrix
C=-A creates C containing the elementwise negation of A. Row and column names are obtained
from B.

https://www.stata.com/manuals/u16.pdf#u16.1.3Longlinesindo-files
https://www.stata.com/manuals/u16.pdf#u16.1.3Longlinesindo-files

4 matrix define — Matrix definition, operators, and functions

*, meaning multiplication. matrix C=A*B, A: a× b and B: b× c, returns C: a× c containing the
matrix product AB; an error is issued if A and B are not conformable. The row names of C are
obtained from the row names of A, and the column names of C from the column names of B.

matrix C=A*s or matrix C=s*A, A: a × b and s a Stata scalar (see [P] scalar) or a literal
number, returns C: a× b containing the elements of A each multiplied by s. The row and column
names of C are obtained from A. For example, matrix VC=MYMAT*2.5 multiplies each element
of MYMAT by 2.5 and stores the result in VC.

/, meaning matrix division by scalar. matrix C=A/s, A: a× b and s a Stata scalar (see [P] scalar)
or a literal number, returns C: a × b containing the elements of A each divided by s. The row
and column names of C are obtained from A.

#, meaning the Kronecker product. matrix C=A#B, A: a × b and B: c × d, returns C: ac × bd
containing the Kronecker product A⊗B, all elementwise products of A and B. The upper-left
submatrix of C is the product A1,1B; the submatrix to the right is A1,2B; and so on. Row and
column names are obtained by using the subnames of A as resulting equation names and the
subnames of B for the subnames of C in each submatrix.

Nothing, meaning copy. matrix B=A copies A into B. The row and column names of B are
obtained from A. The matrix rename command (see [P] matrix utility) will rename instead of
copy a matrix.

’, meaning transpose. matrix B=A’, A: r × c, creates B: c × r containing the transpose of A.
The row names of B are obtained from the column names of A and the column names of B from
the row names of A.

,, meaning join columns by row. matrix C=A,B, A: a× b and B: a× c, returns C: a× (b+ c)
containing A in columns 1 through b and B in columns b+ 1 through b+ c (the columns of B
are appended to the columns of A). An error is issued if the matrices are not conformable. The
row names of C are obtained from A. The column names are obtained from A and B.

\, meaning join rows by column. matrix C=A\B, A: a× b and B: c× b, returns C: (a+ c)× b
containing A in rows 1 through a and B in rows a+1 through a+ c (the rows of B are appended
to the rows of A). An error is issued if the matrices are not conformable. The column names of
C are obtained from A. The row names are obtained from A and B.

matrix define allows complicated matrix expressions. Parentheses may be used to control the
order of evaluation. The default order of precedence for the matrix operators (from highest to lowest)
is

Matrix operator precedence
Operator Symbol

parentheses ()
transpose ’
negation -
Kronecker product #
division by scalar /
multiplication *
subtraction -
addition +
column join ,
row join \

https://www.stata.com/manuals/pscalar.pdf#pscalar
https://www.stata.com/manuals/pscalar.pdf#pscalar
https://www.stata.com/manuals/pmatrixutility.pdf#pmatrixutility

matrix define — Matrix definition, operators, and functions 5

Example 2

The following examples are artificial but informative:

. matrix A = (1,2\3,4)

. matrix B = (5,7\9,2)

. matrix C = A+B

. matrix list C

C[2,2]
c1 c2

r1 6 9
r2 12 6

. matrix B = A-B

. matrix list B

B[2,2]
c1 c2

r1 -4 -5
r2 -6 2

. matrix X = (1,1\2,5\8,0\4,5)

. matrix C = 3*X*A’*B

. matrix list C

C[4,2]
c1 c2

r1 -162 -3
r2 -612 -24
r3 -528 24
r4 -744 -18

. matrix D = (X’*X - A’*A)/4

. matrix rownames D = dog cat // see [P] matrix rownames

. matrix colnames D = bark meow // see [P] matrix rownames

. matrix list D

symmetric D[2,2]
bark meow

dog 18.75
cat 4.25 7.75

. matrix rownames A = aa bb // see [P] matrix rownames

. matrix colnames A = alpha beta // see [P] matrix rownames

. matrix list A

A[2,2]
alpha beta

aa 1 2
bb 3 4

. matrix D=A#D

. matrix list D

D[4,4]
alpha: alpha: beta: beta:
bark meow bark meow

aa:dog 18.75 4.25 37.5 8.5
aa:cat 4.25 7.75 8.5 15.5
bb:dog 56.25 12.75 75 17
bb:cat 12.75 23.25 17 31

. matrix G=A,B\D

https://www.stata.com/manuals/pmatrixrownames.pdf#pmatrixrownames
https://www.stata.com/manuals/pmatrixrownames.pdf#pmatrixrownames
https://www.stata.com/manuals/pmatrixrownames.pdf#pmatrixrownames
https://www.stata.com/manuals/pmatrixrownames.pdf#pmatrixrownames

6 matrix define — Matrix definition, operators, and functions

. matrix list G

G[6,4]
alpha beta c1 c2

aa 1 2 -4 -5
bb 3 4 -6 2

aa:dog 18.75 4.25 37.5 8.5
aa:cat 4.25 7.75 8.5 15.5
bb:dog 56.25 12.75 75 17
bb:cat 12.75 23.25 17 31

. matrix Z = (B - A)’*(B + A’*-B)/4

. matrix list Z

Z[2,2]
c1 c2

alpha -81 -1.5
beta -44.5 8.5

Technical note
Programmers: Watch out for confusion when combining ’, meaning to transpose with local macros,

where ’ is one of the characters that enclose macro names: ‘mname’. Stata will not become confused,
but you might. Compare:

. matrix ‘new1’ = ‘old’

and

. matrix ‘new2’ = ‘old’’

Matrix ‘new2’ contains matrix ‘old’, transposed. Stata will become confused if you type

. matrix ‘C’ = ‘A’\‘B’

because the backslash in front of the ‘B’ makes the macro processor take the left quote literally. No
substitution is ever made for ‘B’. Even worse, the macro processor assumes that the backslash was
meant for it and so removes the character! Pretend that ‘A’ contained a, ‘B’ contained b, and ‘C’
contained c. After substitution, the line would read

. matrix c = a‘B’

which is not at all what was intended. To make your meaning clear, put a space after the backslash,

. matrix ‘C’ = ‘A’\ ‘B’

which would then be expanded to read

. matrix c = a\ b

Matrix functions returning matrices

In addition to matrix operators, Stata has matrix functions, which allow expressions to be passed
as arguments. The following matrix functions are provided:

matrix A=I(dim) defines A as the dim × dim identity matrix, where dim is a scalar expression
and will be rounded to the nearest integer. For example, matrix A=I(3) defines A as the 3× 3
identity matrix.

matrix define — Matrix definition, operators, and functions 7

matrix A=J(r,c,z) defines A as an r × c matrix containing elements z. r, c, and z are scalar
expressions with r and c rounded to the nearest integer. For example, matrixA=J(2,3,0) returns
a 2× 3 matrix containing 0 for each element.

matrix L=cholesky(mexp) performs Cholesky decomposition. An error is issued if the ma-
trix expression mexp does not evaluate to a square, symmetric matrix. For example, matrix
L=cholesky(A) produces the lower triangular (square root) matrix L, such that LL′ = A. The
row and column names of L are obtained from A.

matrix B=invsym(mexp), if mexp evaluates to a square, symmetric, and positive-definite matrix,
returns the inverse. If mexp does not evaluate to a positive-definite matrix, rows will be inverted
until the diagonal terms are zero or negative; the rows and columns corresponding to these terms
will be set to 0, producing a g2-inverse. The row names of B are obtained from the column names
of mexp, and the column names of B are obtained from the row names of mexp.

matrixB=inv(mexp), if mexp evaluates to a square but not necessarily symmetric or positive-definite
matrix, returns the inverse. A singular matrix will result in an error. The row names of B are
obtained from the column names of mexp, and the column names of B are obtained from the
row names of mexp. invsym() should be used in preference to inv(), which is less accurate,
whenever possible. (Also see [P] matrix svd for singular value decomposition.)

matrix B=sweep(mexp,n) applies the sweep operator to the nth row and column of the square
matrix resulting from the matrix expression mexp. n is a scalar expression and will be rounded to
the nearest integer. The names of B are obtained from mexp, except that the nth row and column
names are interchanged. For A: n× n, B = sweep(A,k) produces B: n× n, defined as

Bkk =
1

Akk

Bik = −Aik

Akk
, i 6= k (kth column)

Bkj =
Aij

Akk
, j 6= k (jth row)

Bij = Aij −
AikAkj

Akk
, i 6= k, j 6= k

matrix B=corr(mexp), where mexp evaluates to a covariance matrix, stores the corresponding
correlation matrix in B. The row and column names are obtained from mexp.

matrix B=diag(mexp), where mexp evaluates to a row or column vector (1× c or c× 1), creates
B: c × c with diagonal elements from mexp and off-diagonal elements 0. The row and column
names are obtained from the column names of mexp if mexp is a row vector or the row names if
mexp is a column vector.

matrix B=vec(mexp), where mexp evaluates to an r × c matrix, creates B: rc× 1 containing the
elements of mexp starting with the first column and proceeding column by column.

matrix B=vecdiag(mexp), where mexp evaluates to a square c × c matrix, creates B: 1 × c
containing the diagonal elements from mexp. vecdiag() is the opposite of diag(). The row
name is set to r1. The column names are obtained from the column names of mexp.

matrix B=vech(mexp), where mexp evaluates to an r × r matrix, creates B: r(r + 1)/2 × 1
containing the lower triangle elements of mexp.

matrix B=invvech(mexp), where mexp evaluates to an r(r + 1)/2× 1 matrix, creates symmetric
B: r × r from the elements of mexp.

https://www.stata.com/manuals/pmatrixsvd.pdf#pmatrixsvd

8 matrix define — Matrix definition, operators, and functions

matrix B=vecp(mexp), where mexp evaluates to an r × r matrix, creates B: r(r + 1)/2 × 1
containing the upper triangle elements of mexp.

matrix B=invvecp(mexp), where mexp evaluates to an r(r + 1)/2× 1 matrix, creates symmetric
B: r × r from the elements of mexp.

matrix B=matuniform(r,c) creates B: r × c containing uniformly distributed pseudorandom
numbers on the interval [0, 1].

matrix B=hadamard(mexp, nexp), where mexp and nexp evaluate to r × c matrices, creates a
matrix whose (i, j) element is mexp[i, j] · nexp[i, j]. If mexp and nexp do not evaluate to matrices
of the same size, this function reports a conformability error.

nullmat(B) may only be used with the row-join (,) and column-join (\) operators and informs Stata
that B might not exist. If B does not exist, the row-join or column-join operator simply returns
the other matrix-operator argument. An example of the use of nullmat() is given in [FN] Matrix
functions.

matrix B=get(systemname) returns in B a copy of the Stata internal matrix systemname; see
[P] matrix get. You can obtain the coefficient vector and variance–covariance matrix after an
estimation command either with matrix get or by reference to e(b) and e(V).

Example 3

The examples are, once again, artificial but informative.

. matrix myid = I(3)

. matrix list myid

symmetric myid[3,3]
c1 c2 c3

r1 1
r2 0 1
r3 0 0 1

. matrix new = J(2,3,0)

. matrix list new

new[2,3]
c1 c2 c3

r1 0 0 0
r2 0 0 0

. matrix A = (1,2\2,5)

. matrix Ainv = invsym(A)

. matrix list Ainv

symmetric Ainv[2,2]
r1 r2

c1 5
c2 -2 1

. matrix L = cholesky(4*I(2) + A’*A)

. matrix list L

L[2,2]
c1 c2

c1 3 0
c2 4 4.1231056

. matrix B = (1,5,9\2,1,7\3,5,1)

. matrix Binv = inv(B)

https://www.stata.com/manuals/fnmatrixfunctions.pdf#fnMatrixfunctionsFunctionsnullmat()
https://www.stata.com/manuals/fnmatrixfunctions.pdf#fnMatrixfunctions
https://www.stata.com/manuals/fnmatrixfunctions.pdf#fnMatrixfunctions
https://www.stata.com/manuals/pmatrixget.pdf#pmatrixget

matrix define — Matrix definition, operators, and functions 9

. matrix list Binv

Binv[3,3]
r1 r2 r3

c1 -.27419355 .32258065 .20967742
c2 .15322581 -.20967742 .08870968
c3 .05645161 .08064516 -.07258065

. matrix C = sweep(B,1)

. matrix list C

C[3,3]
r1 c2 c3

c1 1 5 9
r2 -2 -9 -11
r3 -3 -10 -26

. matrix C = sweep(C,1)

. matrix list C

C[3,3]
c1 c2 c3

r1 1 5 9
r2 2 1 7
r3 3 5 1

. matrix Cov = (36.6598,-3596.48\-3596.48,604030)

. matrix R = corr(Cov)

. matrix list R

symmetric R[2,2]
c1 c2

r1 1
r2 -.7642815 1

. matrix d = (1,2,3)

. matrix D = diag(d)

. matrix list D

symmetric D[3,3]
c1 c2 c3

c1 1
c2 0 2
c3 0 0 3

. matrix e = vec(D)

. matrix list e

e[9,1]
c1

c1:c1 1
c1:c2 0
c1:c3 0
c2:c1 0
c2:c2 2
c2:c3 0
c3:c1 0
c3:c2 0
c3:c3 3

. matrix f = vecdiag(D)

. matrix list f

f[1,3]
c1 c2 c3

r1 1 2 3

. * matrix function arguments can be other matrix functions and expressions

. matrix G = diag(inv(B) * vecdiag(diag(d) + 4*sweep(B+J(3,3,10),2)’*I(3))’)

10 matrix define — Matrix definition, operators, and functions

. matrix list G

symmetric G[3,3]
c1 c2 c3

c1 -3.2170088
c2 0 -7.686217
c3 0 0 2.3548387

. set seed 12345

. matrix U = matuniform(3,4)

. matrix list U

U[3,4]
c1 c2 c3 c4

r1 .35762972 .40044262 .68938332 .55973557
r2 .57445129 .20769053 .0286627 .68892448
r3 .46934336 .2071526 .00393225 .01302971

. matrix H = hadamard(B,C)

. matrix list H

H[3,3]
c1 c2 c3

r1 1 25 81
r2 4 1 49
r3 9 25 1

Matrix functions returning scalars

In addition to the above functions used with matrix define, which can be described as matrix
functions returning matrices, there are matrix functions that return mathematical scalars. The list of
functions that follow should be viewed as a continuation of [U] 13.3 Functions. If the functions listed
below are used in a scalar context (for example, used with display or generate), then A, B, . . .
below stand for matrix names (possibly as a string literal or string variable name—details later). If
the functions below are used in a matrix context (in matrix define for instance), then A, B, . . .
may also stand for matrix expressions.

rowsof(A) and colsof(A) return the number of rows or columns of A.

rownumb(A,string) and colnumb(A,string) return the row or column number associated with
the name specified by string. For instance, rownumb(MYMAT,"price") returns the row number
(say, 3) in MYMAT that has the name price (subname price and equation name blank). col-
numb(MYMAT,"out2:price") returns the column number associated with the name out2:price
(subname price and equation name out2). If row or column name is not found, missing is
returned.

rownumb() and colnumb() can also return the first row or column number associated with
an equation name. For example, colnumb(MYMAT,"out2:") returns the first column number in
MYMAT that has equation name out2. Missing is returned if the equation name out2 is not found.

trace(A) returns the sum of the diagonal elements of square matrix A. If A is not square, missing
is returned.

det(A) returns the determinant of square matrix A. The determinant is the volume of the (p− 1)-
dimensional manifold described by the matrix in p-dimensional space. If A is not square, missing
is returned.

diag0cnt(A) returns the number of zeros on the diagonal of the square matrix A. If A is not
square, missing is returned.

https://www.stata.com/manuals/u13.pdf#u13.3Functions

matrix define — Matrix definition, operators, and functions 11

issymmetric(A) returns 1 if the matrix is symmetric and 0 otherwise.

matmissing(A) returns 1 if any elements of the matrix are missing and 0 otherwise.

mreldif(A,B) returns the relative difference of matrix A and B. If A and B do not have the
same dimensions, missing is returned. The matrix relative difference is defined as

maxi,j

(
|A[i, j]−B[i, j]|
|B[i, j]|+ 1

)

el(A,i,j) and A[i,j] return the (i, j) element of A. Usually either construct may be used;
el(MYMAT,2,3) and MYMAT[2,3] are equivalent, although MYMAT[2,3] is more readable. For
the second construct, however, A must be a matrix name—it cannot be a string literal or string
variable. The first construct allows A to be a matrix name, string literal, or string variable. For
instance, assume that mymat (as opposed to MYMAT) is a string variable in the dataset containing
matrix names. mymat[2,3] refers to the (2, 3) element of the matrix named mymat, a matrix that
probably does not exist, and so produces an error. el(mymat,2,3) refers to the data variable
mymat; the contents of that variable will be taken to obtain the matrix name, and el() will then
return the (2, 3) element of that matrix. If that matrix does not exist, Stata will not issue an error;
because you referred to it indirectly, the el() function will return missing.

In either construct, i and j may be any expression (an exp) evaluating to a real. MYMAT[2,3+1]
returns the (2, 4) element. In programs that loop, you might refer to MYMAT[‘i’,‘j’+1].

In a matrix context (such as matrix define), the first argument of el() may be a matrix expression.
For instance, matrix A = B*el(B-C,1,1) is allowed, but display el(B-C,1,1) would be
an error because display is in a scalar context.

The matrix functions returning scalars defined above can be used in any context that allows an
expression—what is abbreviated exp in the syntax diagrams throughout this manual. For instance,
trace() returns the (scalar) trace of a matrix. Say that you have a matrix called MYX. You could
type

. generate tr = trace(MYX)

although this would be a silly thing to do. It would force Stata to evaluate the trace of the matrix
many times, once for each observation in the data, and it would then store that same result over
and over again in the new data variable tr. But you could do it because, if you examine the syntax
diagram for generate (see [D] generate), generate allows an exp.

If you just wanted to see the trace of MYX, you could type

. display trace(MYX)

because the syntax diagram for display also allows an exp; see [P] display. You could do either of
the following:

. local tr = trace(MYX)

. scalar tr = trace(MYX)

This is more useful because it will evaluate the trace only once and then store the result. In the first
case, the result will be stored in a local macro (see [P] macro); in the second, it will be stored in a
Stata scalar (see [P] scalar).

https://www.stata.com/manuals/dgenerate.pdf#dgenerate
https://www.stata.com/manuals/pdisplay.pdf#pdisplay
https://www.stata.com/manuals/pmacro.pdf#pmacro
https://www.stata.com/manuals/pscalar.pdf#pscalar

12 matrix define — Matrix definition, operators, and functions

Example 4

Storing the number as a scalar is better for two reasons: it is more accurate (scalars are stored in
double precision), and it is faster (macros are stored as printable characters, and this conversion is a
time-consuming operation). Not too much should be made of the accuracy issue; macros are stored
with at least 13 digits, but it can sometimes make a difference.

In any case, let’s demonstrate that both methods work by using the simple trace function:
. matrix A = (1,6\8,4)

. local tr = trace(A)

. display ‘tr’
5

. scalar sctr = trace(A)

. scalar list sctr
sctr = 5

Subscripting and element-by-element definition

matrix B=A[r1,r2], for range expressions r1 and r2 (defined below), extracts a submatrix from
A and stores it in B. Row and column names of B are obtained from the extracted rows and
columns of A. In what follows, assume that A is a× b.

A range expression can be a literal number. For example, matrix B=A[1,2] would return a
1× 1 matrix containing A1,2.

A range expression can be a number followed by two periods followed by another number, meaning
the rows or columns from the first number to the second. For example, matrixB=A[2..4,1..5]
would return a 3× 5 matrix containing the second through fourth rows and the first through fifth
columns of A.

A range expression can be a number followed by three periods, meaning all the remaining rows
or columns from that number. For example, matrix B=A[3,4...] would return a 1 × b − 3
matrix (row vector) containing the fourth through last elements of the third row of A.

A range expression can be a quoted string, in which case it refers to the row or column with the
specified name. For example, matrix B=A["price","mpg"] returns a 1× 1 matrix containing
the element whose row name is price and column name is mpg, which would be the same as
matrix B=A[2,3] if the second row were named price and the third column mpg. matrix
B=A["price",1...] would return the 1× b vector corresponding to the row named price. In
either case, if there is no matrix row or column with the specified name, an error is issued, and
the return code is set to 111. If the row or column names include both an equation name and a
subname, the fully qualified name must be specified, as in matrix B=A["eq1:price",1...].

A range expression can be a quoted string containing only an equation name, in which case
it refers to all rows or columns with the specified equation name. For example, matrix
B=A["eq1:","eq1:"] would return the submatrix of rows and columns that have equation
names eq1.

A range expression containing a quoted string referring to an element (not to an entire
equation) can be combined with the .. and ... syntaxes above: For example, matrix
B=A["price"...,"price"...] would define B as the submatrix of A beginning with the
rows and columns corresponding to price. matrix B=A["price".."mpg","price".."mpg"]
would define B as the submatrix of A starting at rows and columns corresponding to price and
continuing through the rows and columns corresponding to mpg.

matrix define — Matrix definition, operators, and functions 13

A range expression can be mixed. For example, matrix B=A[1.."price",2] defines B as the
column vector extracted from the second column of A containing the first element through the
element corresponding to price.

Scalar expressions may be used in place of literal numbers. The resulting number will be rounded
to the nearest integer. Subscripting with scalar expressions may be used in any expression context
(such as generate or replace). Subscripting with row and column names may be used only in
a matrix expression context. This is really not a constraint; see the rownumb() and colnumb()
functions discussed previously in the section titled Matrix functions returning scalars.

matrix A[r,c]=exp changes the r,c element of A to contain the result of the evaluated scalar
expression, as defined in [U] 13 Functions and expressions, and as further defined in Matrix
functions returning scalars. r and c may be scalar expressions and will be rounded to the nearest
integer. The matrix A must already exist; the matrix function J() can be used to achieve this.

matrix A[r,c]=mexp places the matrix resulting from the mexp matrix expression into the already
existing matrix A, with the upper-left corner of the mexp matrix located at the r,c element of A.
If there is not enough room to place the mexp matrix at that location, a conformability error will
be issued, and the return code will be set to 503. r and c may be scalar expressions and will be
rounded to the nearest integer.

Example 5

Continuing with our artificial but informative examples,

. matrix A = (1,2,3,4\5,6,7,8\9,10,11,12\13,14,15,16)

. matrix rownames A = mercury venus earth mars

. matrix colnames A = poor average good exc

. matrix list A

A[4,4]
poor average good exc

mercury 1 2 3 4
venus 5 6 7 8
earth 9 10 11 12
mars 13 14 15 16

. matrix b = A[1,2..3]

. matrix list b

b[1,2]
average good

mercury 2 3

. matrix b = A[2...,1..3]

. matrix list b

b[3,3]
poor average good

venus 5 6 7
earth 9 10 11
mars 13 14 15

. matrix b = A["venus".."earth","average"...]

. matrix list b

b[2,3]
average good exc

venus 6 7 8
earth 10 11 12

. matrix b = A["mars",2...]

https://www.stata.com/manuals/u13.pdf#u13Functionsandexpressions

14 matrix define — Matrix definition, operators, and functions

. matrix list b

b[1,3]
average good exc

mars 14 15 16

. matrix b = A[sqrt(9)+1..substr("xmars",2,4),2.8..2*2] /* strange but valid */

. matrix list b

b[1,2]
good exc

mars 15 16

. matrix rownames A = eq1:alpha eq1:beta eq2:alpha eq2:beta

. matrix colnames A = eq1:one eq1:two eq2:one eq2:two

. matrix list A

A[4,4]
eq1: eq1: eq2: eq2:
one two one two

eq1:alpha 1 2 3 4
eq1:beta 5 6 7 8

eq2:alpha 9 10 11 12
eq2:beta 13 14 15 16

. matrix b = A["eq1:","eq2:"]

. matrix list b

b[2,2]
eq2: eq2:
one two

eq1:alpha 3 4
eq1:beta 7 8

. matrix A[3,2] = sqrt(9)

. matrix list A

A[4,4]
eq1: eq1: eq2: eq2:
one two one two

eq1:alpha 1 2 3 4
eq1:beta 5 6 7 8

eq2:alpha 9 3 11 12
eq2:beta 13 14 15 16

. matrix X = (-3,0\-1,-6)

. matrix A[1,3] = X

. matrix list A

A[4,4]
eq1: eq1: eq2: eq2:
one two one two

eq1:alpha 1 2 -3 0
eq1:beta 5 6 -1 -6

eq2:alpha 9 3 11 12
eq2:beta 13 14 15 16

Technical note
matrix A[i,j]=exp can be used to implement matrix formulas that perhaps Stata does not have

built in. Let’s pretend that Stata could not multiply matrices. We could still multiply matrices, and
after some work, we could do so conveniently. Given two matrices, A: a× b and B: b× c, the (i, j)
element of C = AB, C: a× c, is defined as

Cij =

b∑
k=1

AikBkj

matrix define — Matrix definition, operators, and functions 15

Here is a Stata program to make that calculation:
program matmult // arguments A B C, creates C=A*B

version 18.0 // (or version 18.5 for StataNow)
args A B C // unload arguments into better names
if colsof(‘A’)!=rowsof(‘B’) { // check conformability

error 503
}
local a = rowsof(‘A’) // obtain dimensioning information
local b = colsof(‘A’) // see Matrix functions returning
local c = colsof(‘B’) // scalars above
matrix ‘C’ = J(‘a’,‘c’,0) // create result containing 0s
forvalues i = 1/‘a’ {

forvalues ‘j’ = 1/‘c’ {
forvalues ‘k’ = 1/‘b’ {

matrix ‘C’[‘i’,‘j’] = ‘C’[‘i’,‘j’] + /*
/ ‘A’[‘i’,‘k’]‘B’[‘k’,‘j’]

}
}

}
end

Now if in some other program, we needed to multiply matrix XXI by Xy to form result beta, we
could type matmult XXI Xy beta and never use Stata’s built-in method for multiplying matrices
(matrix beta=XXI*Xy). If we typed the program matmult into a file named matmult.ado, we
would not even have to bother to load matmult before using it—it would be loaded automatically;
see [U] 17 Ado-files.

Name conflicts in expressions (namespaces)
See [P] matrix for a description of namespaces. A matrix might have the same name as a variable

in the dataset, and if it does, Stata might appear confused when evaluating an expression (an exp).
When the names conflict, Stata uses the rule that it always takes the data-variable interpretation. You
can override this.

First, when working interactively, you can avoid the problem by simply naming your matrices
differently from your variables.

Second, when writing programs, you can avoid name conflicts by obtaining names for matrices
from tempname; see [P] macro.

Third, whether working interactively or writing programs, when using names that might conflict,
you can use the matrix() pseudofunction to force Stata to take the matrix-name interpretation.

matrix(name) says that name is to be interpreted as a matrix name. For instance, consider the
statement local new=trace(xx). This might work and it might not. If xx is a matrix and there
is no variable named xx in your dataset, it will work. If there is also a numeric variable named xx
in your dataset, it will not work. Typing the statement will produce a type-mismatch error—Stata
assumes that when you type xx, you are referring to the data variable xx because there is a data
variable xx. Typing local new=trace(matrix(xx)) will then produce the desired result. When
writing programs using matrix names not obtained from tempname, you are strongly advised to state
explicitly that all matrix names are indeed matrix names by using the matrix() function.

The only exception to this recommendation has to do with the construct A[i,j]. The two subscripts
indicate to Stata that A must be a matrix name and not an attempt to subscript a variable, so matrix()
is not needed. This exception applies only to A[i,j]; it does not apply to el(A,i,j), which would
be more safely written as el(matrix(A),i,j).

https://www.stata.com/manuals/u17.pdf#u17Ado-files
https://www.stata.com/manuals/pmatrix.pdf#pmatrix
https://www.stata.com/manuals/pmacro.pdf#pmacro

16 matrix define — Matrix definition, operators, and functions

Technical note

The matrix() and scalar() pseudofunctions (see [P] scalar) are really the same function, but
you do not need to understand this fine point to program Stata successfully. Understanding this might,
however, lead to producing more readable code. The formal definition is this:

scalar(exp) (and therefore matrix(exp)) evaluates exp but restricts Stata to interpreting all
names in exp as scalar or matrix names. Scalars and matrices share the same namespace.

Therefore, because scalar() and matrix() are the same function, typing trace(matrix(xx))
or trace(scalar(xx)) would do the same thing, even though the second looks wrong. Because
scalar() and matrix() allow an exp, you could also type scalar(trace(xx)) and achieve the
same result. scalar() evaluates the exp inside the parentheses: it merely restricts how names are
interpreted, so now trace(xx) clearly means the trace of the matrix named xx.

How can you make your code more readable? Pretend that you wanted to calculate the trace plus
the determinant of matrix xx and store it in the Stata scalar named tpd (no, there is no reason you
would ever want to make such a silly calculation). You are writing a program and want to protect
yourself from xx also existing in the dataset. One solution would be

scalar tpd = trace(matrix(xx)) + det(matrix(xx))

Knowing the full interpretation rule, however, you realize that you can shorten this to

scalar tpd = matrix(trace(xx) + det(xx))

and then, to make it more readable, you substitute scalar() for matrix():

scalar tpd = scalar(trace(xx) + det(xx))

Macro functions
The following macro functions (see [P] macro) are also defined:

rownames A and colnames A return a list of all the row or column subnames (with time-series
operators if applicable) of A, separated by single blanks. The equation names, even if present,
are not included.

roweq A and coleq A return a list of all the row equation names or column equation names of A,
separated by single blanks, and with each name appearing however many times it appears in the
matrix.

rowfullnames A and colfullnames A return a list of all the row or column names, including
equation names of A, separated by single blanks.

Example 6

These functions are provided as macro functions and standard expression functions because Stata’s
expression evaluator works only with strings of no more than 2,045 characters, something not true of
Stata’s macro parser. A matrix with many rows or columns can produce an exceedingly long list of
names.

https://www.stata.com/manuals/pscalar.pdf#pscalar
https://www.stata.com/manuals/pmacro.pdf#pmacro

matrix define — Matrix definition, operators, and functions 17

In sophisticated programming situations, you sometimes want to process the matrices by row and
column names rather than by row and column numbers. Assume that you are programming and have
two matrices, xx and yy. You know that they contain the same column names, but they might be
in a different order. You want to reorganize yy to be in the same order as xx. The following code
fragment will create ‘newyy’ (a matrix name obtained from tempname) containing yy in the same
order as xx:

tempname newyy newcol
local names : colfullnames(xx)
foreach name of local names {

local j = colnumb(yy,"‘name’")
if ‘j’>=. {

display as error "column for ‘name’ not found"
exit 111

}
matrix ‘newcol’ = yy[1...,‘j’]
matrix ‘newyy’ = nullmat(‘newyy’),‘newcol’

}

Also see
[P] macro — Macro definition and manipulation

[P] matrix — Introduction to matrix commands

[P] matrix get — Access system matrices

[P] matrix utility — List, rename, and drop matrices

[P] scalar — Scalar variables

[U] 13.3 Functions
[U] 14 Matrix expressions
Mata Reference Manual

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and
Stata Press are registered trademarks with the World Intellectual Property Organization
of the United Nations. StataNow and NetCourseNow are trademarks of StataCorp
LLC. Other brand and product names are registered trademarks or trademarks of their
respective companies. Copyright c© 1985–2023 StataCorp LLC, College Station, TX,
USA. All rights reserved.

®

For suggested citations, see the FAQ on citing Stata documentation.

https://www.stata.com/manuals/pmacro.pdf#pmacro
https://www.stata.com/manuals/pmatrix.pdf#pmatrix
https://www.stata.com/manuals/pmatrixget.pdf#pmatrixget
https://www.stata.com/manuals/pmatrixutility.pdf#pmatrixutility
https://www.stata.com/manuals/pscalar.pdf#pscalar
https://www.stata.com/manuals/u13.pdf#u13.3Functions
https://www.stata.com/manuals/u14.pdf#u14Matrixexpressions
https://www.stata.com/manuals/m-0m.pdf#m-0mMata
https://www.stata.com/support/faqs/resources/citing-software-documentation-faqs/

