rotatemat - Orthogonal and oblique rotations of a Stata matrix

Description	Menu	Syntax	Options
Remarks and examples	Stored results	Methods and formulas	References
Also see			

Description

rotatemat applies a linear transformation to the specified matrix so that the result minimizes a criterion function over all matrices in a class of feasible transformations. Two classes are supported: orthogonal (orthonormal) and oblique. A wide variety of criterion functions are available, representing different ways to measure the "simplicity" of a matrix. Most of these criteria can be applied with both orthogonal and oblique rotations.

This entry describes the computation engine for orthogonal and oblique transformations of Stata matrices. This command may be used directly on any Stata matrix.

If you are interested in rotation after factor, factormat, pca, or pcamat, see [MV] factor postestimation, [MV] pca postestimation, and the general description of rotate as a postestimation facility in [MV] rotate.

Menu

Statistics $>$ Multivariate analysis $>$ Orthogonal and oblique rotations of a matrix

Syntax

rotatemat matrix_L [, options $]$
options Description
Main
orthogonal
oblique
rotation_methods
normalize
Reporting
format ($\%$ fmt)
blanks(\#)
nodisplay
noloading
norotation
matname (string)
colnames (string)
Optimization
optimize_options control the optimization process; seldom used
restrict to orthogonal rotations; the default, except with promax ()
allow oblique rotations
rotation criterion
rotate Kaiser normalized matrix
display format for matrices; default is format (\%9.5f)
display loadings as blanks when \mid loading $\mid<\#$; default is blanks (0)
suppress all output except log and trace
suppress display of rotated loadings
suppress display of rotation matrix
descriptive label of the matrix to be rotated
descriptive name for columns of the matrix to be rotated
collect is allowed; see [U] 11.1.10 Prefix commands.
rotation_methods Description
*varimax varimax (orthogonal only); the default
vgpf
quartimax
equamax
parsimax
entropy
tandem1
tandem2
*promax $[(\#)]$
oblimin $[(\#)]$
cf (\#)
bentler
oblimax
quartimin
target ($T g$)
partial (Tg W)

[^0]
Options

\qquad
Main
orthogonal specifies that an orthogonal rotation be applied. This is the default.
See Rotation criteria below for details on the rotation_methods available with orthogonal.
oblique specifies that an oblique rotation be applied. This often yields more interpretable factors with a simpler structure than that obtained with an orthogonal rotation. In many applications (for example, after factor and pca), the factors before rotation are orthogonal (uncorrelated), whereas the oblique rotated factors are correlated.
See Rotation criteria below for details on the rotation_methods available with oblique.
normalize requests that the rotation be applied to the Kaiser normalization (Horst 1965) of the matrix A so that the rowwise sums of squares equal 1.

Reporting

format (\%fint) specifies the display format for matrices. The default is format (\%9.5f).
blanks(\#) specifies that small values of the rotated matrix -that is, those elements of $\mathbf{A}\left(\mathbf{T}^{\prime}\right)^{-1}$ that are less than \# in absolute value-are displayed as spaces.
nodisplay suppresses all output except the log and trace.
noloading suppresses the display of the rotated loadings.
norotation suppresses the display of the optimal rotation matrix.
matname (string) is a rarely used output option; it specifies a descriptive label of the matrix to be rotated.
colnames (string) is a rarely used output option; it specifies a descriptive name to refer to the columns of the matrix to be rotated. For instance, colnames (components) specifies that the output label the columns as "components". The default is "factors".
$\sqrt{\text { Optimization }}$
optimize_options control the iterative optimization process. These options are seldom used.
iterate(\#) is a rarely used option; it specifies the maximum number of iterations. The default is iterate (1000).
\log specifies that an iteration \log be displayed.
trace is a rarely used option; it specifies that the rotation be displayed at each iteration.
tolerance(\#) is one of three criteria for declaring convergence and is rarely used. The tolerance () convergence criterion is satisfied when the relative change in the rotation matrix \mathbf{T} from one iteration to the next is less than or equal to \#. The default is tolerance (1e-6).
gtolerance(\#) is one of three criteria for declaring convergence and is rarely used. The gtolerance() convergence criterion is satisfied when the Frobenius norm of the gradient of the criterion function $c()$ projected on the manifold of orthogonal matrices or of normal matrices is less than or equal to \#. The default is gtolerance (1e-6).
ltolerance(\#) is one of three criteria for declaring convergence and is rarely used. The ltolerance () convergence criterion is satisfied when the relative change in the minimization criterion $c()$ from one iteration to the next is less than or equal to \#. The default is ltolerance (1e-6).
protect(\#) requests that \# optimizations with random starting values be performed and that the best of the solutions be reported. The output also indicates whether all starting values converged to the same solution. When specified with a large number, such as protect(50), this provides reasonable assurance that the solution found is the global maximum and not just a local maximum. If trace is also specified, the rotation matrix and rotation criterion value of each optimization will be reported.
maxstep(\#) is a rarely used option; it specifies the maximum number of step-size halvings. The default is maxstep(20).
init (matname) is a rarely used option; it specifies the initial rotation matrix. matname should be square and regular (nonsingular) and have the same number of columns as the matrix matrix_ L to be rotated. It should be orthogonal $\left(\mathbf{T}^{\prime} \mathbf{T}=\mathbf{T} \mathbf{T}^{\prime}=\mathbf{I}\right)$ or normal $\left(\operatorname{diag}\left(\mathbf{T}^{\prime} \mathbf{T}\right)=\mathbf{1}\right)$, depending on whether orthogonal or oblique rotations are performed. init() cannot be combined with random. If neither init() nor random is specified, the identity matrix is used as the initial rotation.
random is a rarely used option; it specifies that a random orthogonal or random normal matrix be used as the initial rotation matrix. random cannot be combined with init(). If neither init() nor random is specified, the identity matrix is used as the initial rotation.

Rotation criteria

In the descriptions below, the matrix to be rotated is denoted as \mathbf{A}, p denotes the number of rows of \mathbf{A}, and f denotes the number of columns of \mathbf{A} (factors or components). If \mathbf{A} is a loading matrix from factor or pca, p is the number of variables and f is the number of factors or components.

Criteria suitable only for orthogonal rotations

varimax and vgpf apply the orthogonal varimax rotation (Kaiser 1958). varimax maximizes the variance of the squared loadings within factors (columns of \mathbf{A}). It is equivalent to $c f(1 / p)$ and to oblimin(1). varimax, the most popular rotation, is implemented with a dedicated fast algorithm and ignores all optimize_options. Specify vgpf to switch to the general GPF algorithm used for the other criteria.
quartimax uses the quartimax criterion (Harman 1976). quartimax maximizes the variance of the squared loadings within the variables (rows of \mathbf{A}). For orthogonal rotations, quartimax is equivalent to $\mathrm{cf}(0)$ and to oblimax.
equamax specifies the orthogonal equamax rotation. equamax maximizes a weighted sum of the varimax and quartimax criteria, reflecting a concern for simple structure within variables (rows of \mathbf{A}) as well as within factors (columns of \mathbf{A}). equamax is equivalent to oblimin $(p / 2)$ and cf (\#), where $\#=f /(2 p)$.
parsimax specifies the orthogonal parsimax rotation. parsimax is equivalent to $\mathrm{cf}(\#)$, where $\#=(f-1) /(p+f-2)$.
entropy applies the minimum entropy rotation criterion (Jennrich 2004).
tandem1 specifies that the first principle of Comrey's tandem be applied. According to Comrey (1967), this principle should be used to judge which "small" factors be dropped.
tandem2 specifies that the second principle of Comrey's tandem be applied. According to Comrey (1967), tandem 2 should be used for "polishing".

Criteria suitable only for oblique rotations

$\operatorname{promax}[(\#)]$ specifies the oblique promax rotation. The optional argument specifies the promax power. Not specifying the argument is equivalent to specifying promax (3). Values less than 4 are recommended, but the choice is yours. Larger promax powers simplify the loadings (generate numbers closer to zero and one) but at the cost of additional correlation between factors. Choosing a value is a matter of trial and error, but most sources find values in excess of 4 undesirable in practice. The power must be greater than 1 but is not restricted to integers.

Promax rotation is an oblique rotation method that was developed before the "analytical methods" (based on criterion optimization) became computationally feasible. Promax rotation comprises an oblique Procrustean rotation of the original loadings \mathbf{A} toward the elementwise \#-power of the orthogonal varimax rotation of \mathbf{A}.

Criteria suitable for orthogonal and oblique rotations

oblimin [(\#)] specifies that the oblimin criterion with $\gamma=\#$ be used. When restricted to orthogonal transformations, the oblimin() family is equivalent to the orthomax criterion function. Special cases of oblimin() include

γ	Special case
0	quartimax / quartimin
$1 / 2$	biquartimax / biquartimin
1	varimax / covarimin
$p / 2$	equamax
$p=$ number of rows of \mathbf{A}.	

γ defaults to zero. Jennrich (1979) recommends $\gamma \leq 0$ for oblique rotations. For $\gamma>0$, it is possible that optimal oblique rotations do not exist; the iterative procedure used to compute the solution will wander off to a degenerate solution.
$\mathrm{cf}(\#)$ specifies that a criterion from the Crawford-Ferguson (1970) family be used with $\kappa=\#$. $\mathrm{cf}(\kappa)$ can be seen as $(1-\kappa) \mathrm{cf}_{1}(\mathbf{A})+(\kappa) \mathrm{cf}_{2}(\mathbf{A})$, where $\mathrm{cf}_{1}(\mathbf{A})$ is a measure of row parsimony and $\mathrm{cf}_{2}(\mathbf{A})$ is a measure of column parsimony. $\mathrm{cf}_{1}(\mathbf{A})$ attains its greatest lower bound when no row of \mathbf{A} has more than one nonzero element, whereas $\mathrm{cf}_{2}(\mathbf{A})$ reaches zero if no column of \mathbf{A} has more than one nonzero element.

For orthogonal rotations, the Crawford-Ferguson family is equivalent to the oblimin() family. For orthogonal rotations, special cases include the following:

κ	Special case
0	quartimax / quartimin
$1 / p$	varimax / covarimin
$f /(2 p)$	equamax
$(f-1) /(p+f-2)$	parsimax
1	factor parsimony
$p=$ number of rows of \mathbf{A}.	
$f=$ number of columns of \mathbf{A}.	

bentler specifies that the "invariant pattern simplicity" criterion (Bentler 1977) be used.
oblimax specifies the oblimax criterion, which maximizes the number of high and low loadings. oblimax is equivalent to quartimax for orthogonal rotations.
quartimin specifies that the quartimin criterion be used. For orthogonal rotations, quartimin is equivalent to quartimax.
$\operatorname{target}(T g)$ specifies that \mathbf{A} be rotated as near as possible to the conformable matrix $T g$. Nearness is expressed by the Frobenius matrix norm.
partial ($T g W$) specifies that \mathbf{A} be rotated as near as possible to the conformable matrix $T g$. Nearness is expressed by a weighted (by W) Frobenius matrix norm. W should be nonnegative and usually is zero-one valued, with ones identifying the target values to be reproduced as closely as possible by the factor loadings, whereas zeros identify loadings to remain unrestricted.

Remarks and examples

stata.com
Remarks are presented under the following headings:

Introduction
Orthogonal rotations
Oblique rotations
Promax rotation

Introduction

For an introduction to rotation, see Harman (1976) and Gorsuch (1983).
rotatemat applies a linear transformation \mathbf{T} to the specified matrix matrix_ L, which we will call \mathbf{A}, so that the result $c\left(\mathbf{A}\left(\mathbf{T}^{\prime}\right)^{-1}\right)$ minimizes a criterion function $c()$ over all matrices \mathbf{T} in a class of feasible transformations.

Two classes are supported: orthogonal (orthonormal) and oblique. Orthonormal rotations comprise all orthonormal matrices \mathbf{T}, such that $\mathbf{T}^{\prime} \mathbf{T}=\mathbf{T} \mathbf{T}^{\prime}=\mathbf{I}$; here $\mathbf{A}\left(\mathbf{T}^{\prime}\right)^{-1}$ simplifies to $\mathbf{A T}$. Oblique rotations are characterized by $\operatorname{diag}\left(\mathbf{T}^{\prime} \mathbf{T}\right)=\mathbf{1}$. All supported rotation criteria are invariant with respect to permutations of the columns and change of signs of the columns. rotatemat returns the solution with positive column sums and with columns sorted by the L2 norm; columns are ordered with respect to the L1 norm if the columns have the same L 2 norm.

A wide variety of criteria $c()$ is available, representing different ways to measure the "simplicity" of a matrix. Most of these criteria can be applied with both orthogonal and oblique rotations. A discussion of the different criteria and of the rotations with which they may be combined is provided in Rotation criteria.

A factor analysis of 24 psychological tests on 145 seventh- and eighth-grade school children with four retained factors is used for illustration. Factors were extracted with maximum likelihood. The loadings are reported by Harman (1976). We enter the factor loadings as a Stata matrix with 24 rows and four columns. For more information, we add full descriptive labels as comments and short labels as row names.

601	019	388	221 \}		Visual perception
372	-025	252	132 \}		Cubes
413	-117	388	144 \}		Paper form board
487	-100	254	192 \}		Flags
691	-304	-279	035 \}		General information
690	-409	-200	-076 \}		Paragraph comprehension
677	-409	-292	084 \}		Sentence completion
674	-189	-099	122 \}		Word classification
697	-454	-212	-080 \}		Word meaning
476	534	-486	092 \}		Addition
558	332	-142	-090 \}		Code
472	508	-139	256 \}		Counting dots
602	244	028	295 \}		Straight-curved capitals
423	058	015	-415 \}		Word recognition
394	089	097	-362 \}		Number recognition
510	095	347	-249 \}		Figure recognition
466	197	-004	-381 \}		Object-number
515	312	152	-147 \}		Number-figure
443	089	109	-150 \}		Figure-word
614	-118	126	-038 \}		Deduction
589	227	057	123 \}		Numerical puzzles
608	-107	127	-038 \}		Problem reasoning
687	-044	138	098 \}		Series completion
651	177	-212	-017)		Arithmetic problems
. matrix colnames L = F1 F2 F3 F4					
. matrix	rownam	es L	visual	cubes	board
>			flags	general	paragraph
>			sentence	wordclas	wordmean
>			add	code	dots
>			capitals	wordrec	numbrec
>			figrec	obj-num	num-fig
>			fig-word	deduct	numpuzz
>			reason	series	arith
. matrix L = L/1000					

Thus using rotatemat, we can study various rotations of L without access to the full data or the correlation matrix.

Orthogonal rotations

We can rotate the matrix L according to an extensive list of criteria, including orthogonal rotations.

Example 1: Orthogonal varimax rotation

The default rotation, orthogonal varimax, is probably the most popular method:
. rotatemat L, format(\%6.3f)
Rotation of $\mathrm{L}[24,4]$

Criterion	varimax
Rotation class	orthogonal
Kaiser normalization	off
ated factors	

Rotated factors

	F1	F2	F3	$F 4$
visual	0.247	0.151	0.679	0.128
cubes	0.171	0.060	0.425	0.078
board	0.206	-0.049	0.549	0.097
flags	0.295	0.068	0.504	0.050
general	0.765	0.214	0.117	0.067
paragraph	0.802	0.074	0.122	0.160
sentence	0.826	0.148	0.117	-0.008
wordclas	0.612	0.230	0.290	0.061
wordmean	0.840	0.049	0.112	0.152
add	0.166	0.846	-0.076	0.082
code	0.222	0.533	0.134	0.313
dots	0.048	0.705	0.257	0.025
capitals	0.240	0.500	0.450	0.020
wordrec	0.249	0.124	0.032	0.526
numbrec	0.178	0.109	0.106	0.499
figrec	0.158	0.076	0.401	0.510
obj-num	0.197	0.262	0.060	0.539
num-fig	0.096	0.352	0.311	0.422
fig-word	0.204	0.175	0.232	0.336
deduct	0.443	0.115	0.365	0.255
numpuzz	0.233	0.428	0.389	0.169
reason	0.432	0.120	0.363	0.256
series	0.440	0.228	0.472	0.184
arith	0.409	0.509	0.150	0.228

Orthogonal rotation

	F1	F2	F3	F4
F1	0.677	0.438	0.475	0.352
F2	-0.632	0.737	0.049	0.232
F3	-0.376	-0.458	0.760	0.268
F4	-0.011	0.234	0.441	-0.866

The varimax rotation \mathbf{T} of \mathbf{A} maximizes the (raw) varimax criterion over all orthogonal \mathbf{T}, which for $p \times f$ matrices is defined as (Harman 1976)

$$
c_{\text {varimax }}(\mathbf{A})=\frac{1}{p} \sum_{j=1}^{f}\left\{\left(\sum_{i=1}^{p} A_{i j}^{4}\right)-\frac{1}{p}\left(\sum_{i=1}^{p} A_{i j}^{2}\right)^{2}\right\}
$$

The criterion $c_{\text {varimax }}(\mathbf{A})$ can be interpreted as the sum over the columns of the variances of the squares of the loadings $A_{i j}$. A column with large variance will typically consist of many small values and a few large values. Achieving such "simple" columnwise distributions is often helpful for interpretation.

- Technical note

The raw varimax criterion as defined here has been criticized because it weights variables by the size of their loadings, that is, by their communalities. This is often not desirable. A common rotation strategy is to weight all rows equally by rescaling to the same rowwise sum of squared loadings. This is known as the Kaiser normalization. You may request this normalized solution with the normalize option. The default in rotatemat and in rotate (see [MV] rotate) is not to normalize.

Many other criteria for the rotation of matrices have been proposed and studied in the literature. Most of these criteria can be stated in terms of a "simplicity function". For instance, quartimax rotation (Carroll 1953) seeks to achieve interpretation within rows-in a factor analytic setup, this means that variables should have a high loading on a few factors and a low loading on the other factors. The quartimax criterion is defined as (Harman 1976)

$$
c_{\text {quartimax }}(\mathbf{A})=\left(\frac{1}{p f} \sum_{i=1}^{p} \sum_{j=1}^{f} A_{i j}^{4}\right)-\left(\frac{1}{p f} \sum_{i=1}^{p} \sum_{j=1}^{f} A_{i j}^{2}\right)^{2}
$$

> Example 2: Orthogonal quartimax rotation

We display the quartimax solution, use blanks to represent loadings with absolute values smaller than 0.3 , and suppress the display of the rotation matrix.

Rotation of L[24,4]				
Criterion		quartimax		
Rotation class orthogonal				
Kaiser normalization off				
Criterion value -1.032898				
Number of iterations 35				
Rotated factors (blanks represent abs()<.3)				
	F1	F2	F3	F4
visual	0.374		0.630	
cubes			0.393	
board			0.513	
flags	0.379		0.450	
general	0.791			
paragraph	0.827			
sentence	0.838			
wordclas	0.669			
wordmean	0.860			
add		0.829		
code	0.316	0.521		
dots		0.701		
capitals	0.348	0.482	0.393	
wordrec	0.316			
numbrec				
figrec			0.382	
obj-num				
num-fig		0.357		
fig-word				
deduct	0.528			
numpuzz	0.342	0.414	0.340	
reason	0.517			
series	0.543		0.395	
arith	0.490	0.478		

Some of the criteria supported by rotatemat are defined as one-parameter families. The oblimin (γ) criterion and the Crawford and Ferguson $\operatorname{cf}(\kappa)$ criterion families contain the varimax and quartimax criteria as special cases; that is, they can be obtained by certain values of γ and κ, respectively. Intermediate parameter values provide compromises between varimax's aim of column simplification and quartimax's aim of row simplification. Varimax and quartimax are equivalent to oblimin(1) and oblimin(0), respectively. A compromise, oblimin(0.5), is also known as biquartimax.

> Example 3: Orthogonal biquartimax rotation

Because the varimax and quartimax solutions are so close for our matrix L , the biquartimax compromise will also be rather close.

```
. rotatemat L, oblimin(0.5) format(%6.3f) norotation
    (output omitted)
```

- Technical note

You may have noticed a difference between the output of rotatemat in the default case or equivalently when we type

```
. rotatemat L, varimax
```

and in other cases. In the default case, no mention is made of the criterion value and the number of iterations. rotatemat uses a fast special algorithm for this most common case, whereas for other rotations it uses a general gradient projection algorithm (GPF) proposed by Jennrich (2001, 2002); see also Bernaards and Jennrich (2005). The general algorithm is used to obtain the varimax rotation if you specify the option vgpf rather than varimax.

The rotations we have illustrated are orthogonal-the lengths of the rows and the angles between the rows are not affected by the rotations. We may verify-we do not show this in the manual to conserve paper-that after an orthogonal rotation of L

```
. matlist L*L'
```

and

```
. matlist r(AT)*r(AT),
```

return the same 24 by 24 matrix, whereas

```
. matlist r(T)*r(T)'
```

and

```
. matlist r(T)'*r(T)
```

both return a 2×2 identity matrix. rotatemat returns in $r(A T)$ the rotated matrix and in $r(T)$ the rotation matrix.

Oblique rotations

rotatemat provides a second class of rotations: oblique rotations. These rotations maintain the norms of the rows of the matrix but not their inner products. In geometric terms, interpreting the rows of the matrix to be rotated as vectors, both the orthogonal and the oblique rotations maintain the lengths of the vectors. Under orthogonal transformations, the angles between the vectors are also left unchanged-these transformations comprise true reorientations in space and reflections. Oblique rotations do not conserve angles between vectors. If the vectors are orthogonal before rotations-as will be the case if we are rotating factor or component loading matrices-this will no longer be the case after the rotation. The "freedom" to select angles between the rows allows oblique rotations to generate simpler loading structures than the orthogonal rotations-sometimes much simpler. In a factor analytic setting, the disadvantage is, however, that the rotated factors are correlated.
rotatemat can obtain oblique rotations for most of the criteria that are available for orthogonal rotations; some of the criteria (such as the entropy criterion) are available only for the orthogonal case.

> Example 4: Oblique oblimin rotation

We illustrate with the psychological tests matrix L and apply the oblique oblimin criterion.

```
. rotatemat L, oblimin oblique format(%6.3f) blanks(0.3)
Rotation of L[24,4]
    Criterion oblimin(0)
                            Rotation class oblique
    Kaiser normalization off
    Criterion value . }195736
    Number of iterations 78
Rotated factors (blanks represent abs()<.3)
```

	F1	F2	F3	F4
visual		0.686		
cubes		0.430		
board		0.564		
flags		0.507		
general	0.771			
paragraph	0.808			
sentence	0.865			
wordclas	0.560			

add	0.864	
code	0.460	0.305

add	0.864	
code	0.460	0.305

 dots \(\quad 0.701\)
 capitals
 \(0.437 \quad 0.442\)
 wordrec
 numbrec
 \(\begin{array}{ll} & 0.543 \\ 0.314 & 0.540\end{array}\)
 figrec
 obj-num
 num-fig
 0.584
 0.438
 fig-word
 0.341
 deduct
 0.325
 numpuzz
 \(0.344 \quad 0.347\)
 reason
 0.311
 series
 0.417
 arith
 0.857
 0.305

0.571
0.543
0.540
0.584
0.438
0.341
0.428
Oblique rotation

	F1	F2	F3	F4
F1	0.823	0.715	0.584	0.699
F2	-0.483	0.019	0.651	0.213
F3	-0.299	0.587	-0.435	0.207
F4	-0.006	0.379	0.213	-0.651

The option oblique requested an oblique rotation rather than the default orthogonal. You may verify that $r(A T)$ equals $L * \operatorname{inv}(r(T)$ ') within reasonable roundoff with

```
. matlist r(AT) - L * inv(r(T)')
    (output omitted)
```

The correlation between the rotated dimensions is easily obtained.

```
. matlist r(T)' * r(T)
```

	F1	F2	F3	F4
F1	1			
F2	.4026978	1		
F3	.294928	.2555824	1	
F4	.4146879	.3784689	.3183115	1

Promax rotation

rotatemat also offers promax rotation.

> Example 5: Oblique promax rotation

We use the matrix L to illustrate promax rotation.

Rotation of L[24,4]				
Criterion		promax (3)		
Rotation class obliq				
Kaiser normalization off				
Rotated factors (blanks represent abs()<.3)				
	F1	F2	F3	F4
visual		0.775		
cubes		0.487		
board		0.647		
flags		0.572		
general	0.786			
paragraph	0.825			
sentence	0.888			
wordclas	0.543			
wordmean	0.878			
add			0.921	
code			0.466	
dots			0.728	
capitals		0.468	0.441	
wordrec				0.606
numbrec				0.570
figrec		0.364		0.539
obj-num				0.610
num-fig				0.425
fig-word				0.337
deduct		0.323		
numpuzz		0.369	0.336	
reason		0.322		
series		0.462		
arith			0.436	

Oblique rotation

	F1	F2	F3	F4
F1	0.841	0.829	0.663	0.743
F2	-0.462	0.020	0.614	0.215
F3	-0.282	0.478	-0.386	0.159
F4	-0.012	0.290	0.184	-0.614

The correlation between the rotated dimensions can be obtained as

matlist $r(T)^{\prime} * r(T)$				
	$F 1$	$F 2$	F	F
F1	1			
F2	.5491588	1	1	
F3	.3807942	.4302401		
F4	.4877064	.5178414	.4505817	1

Stored results

rotatemat stores the following in $r()$:
Scalars
r(f)
r (iter)
$r(r c)$
r (nnconv)
Macros
r (cmd)
r(ctitle)
r(ctitle12)
r(criterion)
r(class)
r (normalization)
r(carg)
Matrices
$r(T)$
r (AT)
r (fmin)
criterion value
number of GPF iterations
return code
number of nonconvergent trials; protect () only
rotatemat
descriptive label of rotation method
version of r (ctitle) at most 12 characters long
criterion name (e.g., oblimin)
orthogonal or oblique
kaiser or none
criterion argument
optimal transformation \mathbf{T}
optimal $\mathbf{A T}=\mathbf{A}\left(\mathbf{T}^{\prime}\right)^{-1}$
minimums found; protect() only

Methods and formulas

rotatemat minimizes a scalar-valued criterion function $c(\mathbf{A T})$ with respect to the set of orthogonal matrices $\mathbf{T}^{\prime} \mathbf{T}=\mathbf{I}$, or $c\left(\mathbf{A}\left(\mathbf{T}^{\prime}\right)^{-1}\right)$ with respect to the normal matrix, $\operatorname{diag}\left(\mathbf{T}^{\prime} \mathbf{T}\right)=\mathbf{1}$. For orthonormal $\mathbf{T}, \mathbf{T}=\left(\mathbf{T}^{\prime}\right)^{-1}$.

The rotation criteria can be conveniently written in terms of scalar-valued functions; see Bernaards and Jennrich (2005). Define the inner product $\langle\mathbf{A}, \mathbf{B}\rangle=\operatorname{trace}\left(\mathbf{A}^{\prime} \mathbf{B}\right) .|\mathbf{A}|=\sqrt{\langle\mathbf{A}, \mathbf{A}\rangle}$ is called the Frobenius norm of the matrix \mathbf{A}. Let $\boldsymbol{\Lambda}$ be a $p \times k$ matrix. Denote by \mathbf{X}^{2} the direct product $\mathbf{X} \cdot \mathbf{X}$. See Harman (1976) for information on many of the rotation criteria and references to the authors originally proposing the criteria. Sometimes we list an alternative reference. Our notation is similar to that of Bernaards and Jennrich (2005).
rotatemat uses the iterative "gradient projection algorithm" (Jennrich 2001, 2002) for the optimization of the criterion over the permissible transformations. Different versions are provided for optimal orthogonal and oblique rotations; see Bernaards and Jennrich (2005).

Varimax (orthogonal only)

Varimax is equivalent to oblimin with $\gamma=1$ or to the Crawford-Ferguson family with $\kappa=1 / p$; see below.

Quartimax (orthogonal only)

$$
c(\boldsymbol{\Lambda})=\sum_{i} \sum_{r} \lambda_{i r}^{4}=-\frac{1}{4}\left\langle\boldsymbol{\Lambda}^{2}, \boldsymbol{\Lambda}^{2}\right\rangle
$$

Equamax (orthogonal only)

Equamax is equivalent to oblimin with $\gamma=p / 2$ or to the Crawford-Ferguson family with $\kappa=f /(2 p)$; see below.

Parsimax (orthogonal only)

Parsimax is equivalent to the Crawford-Ferguson family with $\kappa=(f-1) /(p+f-2)$; see below.

Entropy (orthogonal only); see Jennrich (2004)

$$
c(\boldsymbol{\Lambda})=-\frac{1}{2}\left\langle\boldsymbol{\Lambda}^{2}, \log \boldsymbol{\Lambda}^{2}\right\rangle
$$

Tandem principal 1 (orthogonal only); see Comrey (1967)

$$
c(\boldsymbol{\Lambda})=-\left\langle\boldsymbol{\Lambda}^{2},\left(\boldsymbol{\Lambda} \boldsymbol{\Lambda}^{\prime}\right)^{2} \boldsymbol{\Lambda}^{2}\right\rangle
$$

Tandem principal 2 (orthogonal only); see Comrey (1967)

$$
c(\boldsymbol{\Lambda})=\left\langle\boldsymbol{\Lambda}^{2},\left\{\mathbf{1 1}^{\prime}-\left(\boldsymbol{\Lambda} \boldsymbol{\Lambda}^{\prime}\right)^{2}\right\} \boldsymbol{\Lambda}^{2}\right\rangle
$$

Promax (oblique only)

Promax does not fit in the maximizing-of-a-simplicity-criterion framework that is at the core of rotatemat. The promax method (Hendrickson and White 1964) was proposed before computing power became widely available. The promax rotation comprises three steps:

1. Perform an orthogonal rotation on \mathbf{A}; rotatemat uses varimax.
2. Raise the elements of the rotated matrix to some power, preserving the signs of the elements. Typically, the power is taken from the range [2,4]. This operation is meant to distinguish more clearly between small and large values.
3. The matrix from step 2 is used as the target for an oblique Procrustean rotation from the original matrix \mathbf{A}. The method to compute this rotation in promax is different from the method in the procrustes command (see [MV] procrustes). The latter produces the real least-squares oblique rotation; promax uses an approximation.

Oblimin; see Jennrich (1979)

$$
c(\boldsymbol{\Lambda})=\frac{1}{4}\left\langle\boldsymbol{\Lambda}^{2},\left\{\mathbf{I}-(\gamma / p) \mathbf{1 1}^{\prime}\right\} \boldsymbol{\Lambda}^{2}\left(\mathbf{1 1}^{\prime}-\mathbf{I}\right)\right\rangle
$$

Orthomax and oblimin are equivalent when restricted to orthogonal rotations. Special cases of oblimin() include the following:

γ	Special case
0	quartimin
$1 / 2$	biquartimin
$p / 2$	equamax
1	varimax

Crawford and Ferguson (1970) family

$$
c(\boldsymbol{\Lambda})=\frac{1-\kappa}{4}\left\langle\boldsymbol{\Lambda}^{2}, \boldsymbol{\Lambda}^{2}\left(\mathbf{1 1} \mathbf{1}^{\prime}-\mathbf{I}\right)\right\rangle+\frac{\kappa}{4}\left\langle\boldsymbol{\Lambda}^{2},\left(\mathbf{1} \mathbf{1}^{\prime}-\mathbf{I}\right) \boldsymbol{\Lambda}^{2}\right\rangle
$$

When restricted to orthogonal transformations, cf() and $\operatorname{oblimin}()$ are in fact equivalent. Special cases of cf() include the following:

κ	Special case
0	quartimax
$1 / p$	varimax
$f /(2 p)$	equamax
$(f-1) /(p+f-2)$	parsimax
1	factor parsimony

Bentler's invariant pattern simplicity; see Bentler (1977)

$$
c(\boldsymbol{\Lambda})=\log \left[\operatorname{det}\left\{\left(\boldsymbol{\Lambda}^{2}\right)^{\prime} \boldsymbol{\Lambda}^{2}\right\}\right]-\log \left(\operatorname{det}\left[\operatorname{diag}\left\{\left(\boldsymbol{\Lambda}^{2}\right)^{\prime} \boldsymbol{\Lambda}^{2}\right\}\right]\right)
$$

Oblimax

$$
c(\boldsymbol{\Lambda})=-\log \left(\left\langle\boldsymbol{\Lambda}^{2}, \boldsymbol{\Lambda}^{2}\right\rangle\right)+2 \log (\langle\boldsymbol{\Lambda}, \boldsymbol{\Lambda}\rangle)
$$

For orthogonal transformations, oblimax is equivalent to quartimax; see above.

Quartimin

$$
c(\boldsymbol{\Lambda})=\sum_{r \neq s} \sum_{i} \lambda_{i r}^{2} \lambda_{i s}^{2}=-\frac{1}{4}\left\langle\boldsymbol{\Lambda}^{2}, \boldsymbol{\Lambda}^{2}\left(\mathbf{1 1}^{\prime}-\mathbf{I}\right)\right\rangle
$$

Target

$$
c(\boldsymbol{\Lambda})=\frac{1}{2}|\boldsymbol{\Lambda}-\mathbf{H}|^{2}
$$

for given target matrix \mathbf{H}.

Partially specified target

$$
c(\boldsymbol{\Lambda})=|\mathbf{W} \cdot(\boldsymbol{\Lambda}-\mathbf{H})|^{2}
$$

for given target matrix \mathbf{H}, nonnegative weighting matrix \mathbf{W} (usually zero-one valued) and with . denoting the direct product.

References

Bentler, P. M. 1977. Factor simplicity index and transformations. Psychometrika 42: 277-295. https://doi.org/10.1007/BF02294054.

Bernaards, C. A., and R. I. Jennrich. 2005. Gradient projection algorithms and software for arbitrary rotation criteria in factor analysis. Educational and Psychological Measurement 65: 676-696. https://doi.org/10.1177/0013164404272507.
Carroll, J. B. 1953. An analytical solution for approximating simple structure in factor analysis. Psychometrika 18: 23-38. https://doi.org/10.1007/BF02289025.
Comrey, A. L. 1967. Tandem criteria for analytic rotation in factor analysis. Psychometrika 32: 143-154. https://doi.org/10.1007/BF02289422.
Crawford, C. B., and G. A. Ferguson. 1970. A general rotation criterion and its use in orthogonal rotation. Psychometrika 35: 321-332. https://doi.org/10.1007/BF02310792.
Gorsuch, R. L. 1983. Factor Analysis. 2nd ed. Hillsdale, NJ: Lawrence Erlbaum.
Harman, H. H. 1976. Modern Factor Analysis. 3rd ed. Chicago: University of Chicago Press.
Hendrickson, A. E., and P. O. White. 1964. Promax: A quick method for rotation to oblique simple structure. British Journal of Statistical Psychology 17: 65-70. https://doi.org/10.1111/j.2044-8317.1964.tb00244.x.

Horst, P. 1965. Factor Analysis of Data Matrices. New York: Holt, Rinehart and Winston.
Jennrich, R. I. 1979. Admissible values of γ in direct oblimin rotation. Psychometrika 44: 173-177. https://doi.org/10.1007/BF02293969.
_-. 2001. A simple general procedure for orthogonal rotation. Psychometrika 66: 289-306. https://doi.org/10.1007/BF02294840.
——. 2002. A simple general method for oblique rotation. Psychometrika 67: 7-20. https://doi.org/10.1007/BF02294706.
-_. 2004. Rotation to simple loadings using component loss functions: The orthogonal case. Psychometrika 69: 257-273. https://doi.org/10.1007/BF02295943.
Kaiser, H. F. 1958. The varimax criterion for analytic rotation in factor analysis. Psychometrika 23: 187-200. https://doi.org/10.1007/BF02289233.

Also see

[MV] rotate - Orthogonal and oblique rotations after factor and pca
[MV] procrustes - Procrustes transformation

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Organization of the United Nations. StataNow and NetCourseNow are trademarks of StataCorp LLC. Other brand and product names are registered trademarks or trademarks of their respective companies. Copyright (c) 1985-2023 StataCorp LLC, College Station, TX,
 USA. All rights reserved.

For suggested citations, see the FAQ on citing Stata documentation.

[^0]: *varimax and promax ignore all optimize_options.

