factor postestimation - Postestimation tools for factor and factormat

Postestimation commands	predict	estat
Remarks and examples	Stored results	Methods and formulas
References	Also see	

Postestimation commands

The following postestimation commands are of special interest after factor and factormat:

Command	Description
estat anti	anti-image correlation and covariance matrices
estat common	correlation matrix of the common factors
estat factors	AIC and BIC model-selection criteria for different numbers of factors
estat kmo	Kaiser-Meyer-Olkin measure of sampling adequacy
estat residuals	matrix of correlation residuals
estat rotatecompare	compare rotated and unrotated loadings
estat smc	squared multiple correlations between each variable and the rest
estat structure	correlations between variables and common factors
*estat summarize	estimation sample summary
loadingplot	plot factor loadings
rotate	rotate factor loadings
scoreplot	plot score variables
screeplot	plot eigenvalues

*estat summarize is not available after factormat.

The following standard postestimation commands are also available:
Command Description

* estimates cataloging estimation results; see [R] estimates
\dagger predict regression and Bartlett scores
*estimates table is not allowed, and estimates stats is allowed only with the ml factor method.
$\dagger_{\text {predict }}$ after factormat works only if you have variables in memory that match the names specified in factormat. predict assumes mean zero and standard deviation one unless the means() and sds() options of factormat were provided.

predict

Description for predict

predict creates new variables containing predictions such as factors scored by the regression method or by the Bartlett method.

Menu for predict

Statistics $>$ Postestimation

Syntax for predict

predict [type] \{stub*|newvarlist $\}[$ if] [in] [, statistic options]
statistic Description
Main
regression regression scoring method; the default
bartlett Bartlett scoring method
options Description
Main
norotated use unrotated results, even when rotated results are available
notable suppress table of scoring coefficients
format (\% fint) format for displaying the scoring coefficients

Options for predict

Main
regression produces factors scored by the regression method. This is the default.
bartlett produces factors scored by the method suggested by Bartlett (1937, 1938). This method produces unbiased factors, but they may be less accurate than those produced by the default regression method suggested by Thomson (1951). Regression-scored factors have the smallest mean squared error from the true factors but may be biased.
norotated specifies that unrotated factors be scored even when you have previously issued a rotate command. The default is to use rotated factors if they are available and unrotated factors otherwise. notable suppresses the table of scoring coefficients. format ($\%$ fmt) specifies the display format for scoring coefficients.

estat

Description for estat

estat anti displays the anti-image correlation and anti-image covariance matrices. These are minus the partial covariance and minus the partial correlation matrices of all pairs of variables, holding all other variables constant.
estat common displays the correlation matrix of the common factors. For orthogonal factor loadings, the common factors are uncorrelated, and hence an identity matrix is shown. estat common is of more interest after oblique rotations.
estat factors displays model-selection criteria (AIC and BIC) for models with $1,2, \ldots$, \# factors. Each model is estimated using maximum likelihood (that is, using the ml option of factor).
estat kmo specifies that the Kaiser-Meyer-Olkin (KMO) measure of sampling adequacy be displayed. KMO takes values between 0 and 1 , with small values meaning that overall the variables have too little in common to warrant a factor analysis. Historically, the following labels are given to values of KмO (Kaiser 1974):

0.00 to 0.49	unacceptable
0.50 to 0.59	miserable
0.60 to 0.69	mediocre
0.70 to 0.79	middling
0.80 to 0.89	meritorious
0.90 to 1.00	marvelous

estat residuals displays the raw or standardized residuals of the observed correlations with respect to the fitted (reproduced) correlation matrix.
estat rotatecompare displays the unrotated factor loadings and the most recent rotated factor loadings.
estat smc displays the squared multiple correlations between each variable and all other variables. SMC is a theoretical lower bound for communality, so it is an upper bound for uniqueness. The pf factor method estimates the communalities by smc.
estat structure displays the factor structure, that is, the correlations between the variables and the common factors.
estat summarize displays summary statistics of the variables in the factor analysis over the estimation sample. This subcommand is, of course, not available after factormat.

Menu for estat

Statistics $>$ Postestimation

Syntax for estat

Anti-image correlation/covariance matrices

```
estat anti [, nocorr nocov format(%fmt)]
```

Correlation of common factors

```
estat common [, norotated format (%fmt)]
```

Model-selection criteria

```
estat factors [, factors(#) detail]
```

Sample adequacy measures

```
estat kmo [, novar format(%fmt)]
```

Residuals of correlation matrix

```
estat residuals [, fitted obs sresiduals format(%fmt)]
```

Comparison of rotated and unrotated loadings

```
estat rotatecompare [, format(%fmt)]
```

Squared multiple correlations

```
estat smc [, format (% fmt)]
```

Correlations between variables and common factors

```
estat structure [, norotated format (% fmt)]
```

Summarize variables for estimation sample

```
estat summarize [, labels noheader noweights]
```

collect is allowed with estat anti, estat common, estat factors, estat kmo, estat residuals, estat smc, estat structure, and estat summarize; see [U] 11.1.10 Prefix commands.

Options for estat

\qquad Main
nocorr, an option used with estat anti, suppresses the display of the anti-image correlation matrix. nocov, an option used with estat anti, suppresses the display of the anti-image covariance matrix. format (\%fmt) specifies the display format. The defaults differ between the subcommands. norotated, an option used with estat common and estat structure, requests that the displayed and returned results be based on the unrotated original factor solution rather than on the last rotation (orthogonal or oblique).
factors(\#), an option used with estat factors, specifies the maximum number of factors to include in the summary table.
detail, an option used with estat factors, presents the output from each run of factor (or factormat) used in the computations of the AIC and BIC values.
novar, an option used with estat kmo, suppresses the KMO measures of sampling adequacy for the variables in the factor analysis, displaying the overall KMO measure only.
fitted, an option used with estat residuals, displays the fitted (reconstructed) correlation matrix on the basis of the retained factors.
obs, an option used with estat residuals, displays the observed correlation matrix.
sresiduals, an option used with estat residuals, displays the matrix of standardized residuals of the correlations. Be careful when interpreting these residuals; see Jöreskog and Sörbom (1988).
labels, noheader, and noweights are the same as for the generic estat summarize command; see $[R]$ estat summarize.

Remarks and examples

stata.com
Remarks are presented under the following headings:
Postestimation statistics
Plots of eigenvalues, factor loadings, and scores
Rotating the factor loadings
Factor scores

Postestimation statistics

Many postestimation statistics are available after factor and factormat.
> Example 1: Squared multiple correlations
After factor and factormat there are several "classical" methods for assessing whether the variables have enough in common to have warranted the use of a factor model. One method is to examine the squared multiple correlations of each variable with all other variables-this is usually an upper bound to communality and thus a lower bound to $1-$ uniqueness $(=$ communality $)$ of the variables.

```
. use https://www.stata-press.com/data/r18/bg2
(Physician-cost data)
. quietly factor bg2cost1-bg2cost6, factors(2) ml
. estat smc
Squared multiple correlations of variables with all other variables
```

Variable	smc
bg2cost1	0.1054
bg2cost2	0.1370
bg2cost3	0.1637
bg2cost4	0.0866
bg2cost5	0.1671
bg2cost6	0.1683

Other diagnostic tools, such as examining the anti-image correlation and anti-image covariance matrices (estat anti) and the Kaiser-Meyer-Olkin measure of sampling adequacy (estat kmo), are also available. See [MV] pca postestimation for an illustration of their use.

> Example 2: Model-selection criteria

Another set of postestimation tools help in determining the number of factors that should be retained. Later we will show the use of screeplot for producing a scree plot-a plot of the explained variance by the common factors. This is often used as a visual guide for selecting the number of factors to retain.

Some authors advocate the standard model information criteria AIC and BIC for determining the number of factors (Schwarz 1978; Akaike 1987). This presupposes that the factors are extracted by maximum likelihood. estat factors provides these measures.

```
. estat factors
Factor analysis with different numbers of factors (maximum likelihood)
```

\#factors	loglik	df_m	df_r	AIC	BIC
1	-60.53727	6	9	133.0745	159.1273
2	-6.842448	11	4	35.6849	83.44823
3	$-3.34 \mathrm{e}-12$	15	0	30	95.13182

no Heywood cases encountered
The table shows the AIC and BIC statistics for the models with 1,2 , and 3 factors. The three-factor model is saturated, with 0 degrees of freedom. In this trivial case, and excluding the saturated case, both criteria select the two-factor model.

> Example 3: Structure matrix and observed correlations

Two estat subcommands display statistics that help in interpreting the model and the results-in particular after an oblique rotation. estat structure displays the structure matrix containing the correlations between the (manifest) variables and the common factors.

```
. estat structure
Structure matrix: correlations between variables and common factors
```

Variable	Factor1	Factor2
bg2cost1	-0.1371	0.4235
bg2cost2	0.4140	0.1994
bg2cost3	0.6199	0.3692
bg2cost4	0.3577	0.0909
bg2cost5	-0.3752	0.4355
bg2cost6	-0.4295	0.4395

This matrix of correlations coincides with the pattern matrix, that is, the matrix with factor loadings. This holds true for the unrotated factor solution as well as after an orthogonal rotation, such as a varimax rotation. It does not hold true after an oblique rotation. After an oblique rotation, the common factors are correlated. This correlation between the common factors also influences the correlation between the common factors and the manifest variables. The correlation matrix of the common factors is displayed by the common subcommand of estat. Because we have not yet rotated, we would see only an identity matrix. Later we show estat common output after an oblique rotation.

To assess the quality of a factor model, we may compare the observed correlation matrix \mathbf{C} with the fitted ("reconstructed") matrix $\widehat{\boldsymbol{\Sigma}}=\widehat{\boldsymbol{\Lambda}} \widehat{\boldsymbol{\Phi}} \widehat{\boldsymbol{\Lambda}}^{\prime}+\widehat{\boldsymbol{\Psi}}$ by examining the raw residuals $\mathbf{C}-\widehat{\boldsymbol{\Sigma}}$.
. estat residuals, obs fit
Observed correlations

Variable	bg2co~1	bg2co~2	bg2co~3	bg2co~4	bg2co~5	bg2co~6
bg2cost1	1.0000					
bg2cost2	0.0920	1.0000				
bg2cost3	0.0540	0.3282	1.0000			
bg2cost4	-0.0380	0.1420	0.2676	1.0000		
bg2cost5	0.2380	-0.1394	-0.0550	-0.0567	1.0000	
bg2cost6	0.2431	-0.0671	-0.1075	-0.1329	0.3524	1.0000

Fitted ("reconstructed") values for correlations

Variable	bg2co~1	bg2co~2	bg2co~3	bg2co~4	bg2co~5	bg2co~6
bg2cost1	1.0000					
bg2cost2	0.0277	1.0000				
bg2cost3	0.0714	0.3303	0.9999			
bg2cost4	-0.0106	0.1662	0.2553	1.0000		
bg2cost5	0.2359	-0.0685	-0.0718	-0.0946	1.0000	
bg2cost6	0.2450	-0.0902	-0.1040	-0.1137	0.3525	1.0000

Raw residuals of correlations (observed-fitted)

Variable	bg2co~1	bg2co~2	bg2co~3	bg2co~4	bg2co~5	bg2co~6
bg2cost1	-0.0000					
bg2cost2	0.0643	-0.0000				
bg2cost3	-0.0174	-0.0021	0.0001			
bg2cost4	-0.0274	-0.0242	0.0124	-0.0000		
bg2cost5	0.0021	-0.0709	0.0168	0.0379	0.0000	
bg2cost6	-0.0019	0.0231	-0.0035	-0.0193	-0.0002	-0.0000

To gauge the size of the residuals, estat residuals can also display the standardized residuals.

```
. estat residuals, sres
```

Standardized residuals of correlations

Variable	bg2co~1	bg2co~2	bg2co~3	bg2co~4	bg2co~5	bg2co~6
bg2cost1	-0.0001					
bg2cost2	1.5324	-0.0003				
bg2cost3	-0.4140	-0.0480	0.0011			
bg2cost4	-0.6538	-0.5693	0.2859	-0.0000		
bg2cost5	0.0484	-1.6848	0.3993	0.9003	0.0001	
bg2cost6	-0.0434	0.5480	-0.0836	-0.4560	-0.0037	-0.0000

Be careful when interpreting these standardized residuals, as they tend to be smaller than normalized residuals; that is, these residuals tend to have a smaller variance than 1 if the model is true (see Bollen [1989]).

Plots of eigenvalues, factor loadings, and scores

Scree plots, factor loading plots, and score plots are easily obtained after factor and factormat.
> Example 4: The scree plot
The scree plot is a popular tool for determining the number of factors to be retained. A scree plot is a plot of the eigenvalues shown in decreasing order (Cattell 1966). We fit a factor model, extracting factors with the principal factor method.

```
. use https://www.stata-press.com/data/r18/sp2
. factor ghp31-ghp05, pcf
(output omitted)
```

How many factors should we retain? We issue the screeplot command with the mean option, specifying that a horizontal line be plotted at the mean of the eigenvalues (a height of 1 because we are dealing with the eigenvalues of a correlation matrix).

```
. screeplot, mean
```

Scree plot of eigenvalues after factor

The plot suggests that we retain three factors, both because of the shape of the scree plot and because of Kaiser's well-known criterion suggesting that we retain factors with eigenvalue larger than 1. We may specify the option mineigen(1) during estimation to enforce this criterion. Here there is no need-mineigen(1) is the default with pcf.
$>$ Example 5: Factor loadings plot
A second plot that is sometimes useful is the factor loadings plot. We display the plot with the loadings of the leading two factors.
loadingplot, xline(0) yline(0) aspect(1) note(Unrotated principal factors)
Factor loadings

The plot makes it relatively easy to identify clusters of variables with similar loadings. With more than two factors, we can choose to see the multiple plots in a matrix style or a combined-graph style. The default is matrix style, but the combined style allows better control over various graph options-for instance, the addition of xline (0) and yline(0). Here is a combined style graph.

```
. loadingplot, factors(3) combined xline(0) yline(0) aspect(1)
```

$>$ xlabel $(-0.8(0.4) 0.8) \mathrm{ylabel}(-0.8(0.4) 0.8)$

Factor loadings

Example 6: Score variables plot

Common factor scores can also be plotted for the observations by using the scoreplot command. (See the discussion of predict to see how you can produce score variables.)

```
. scoreplot, msymbol(smcircle) msize(tiny)
```

Score variables (factor)

With so many observations, the plot's main purpose is to identify extreme cases. With smaller datasets with meaningful descriptions of the observations (for example, country names, brands), the score plot is good for visually clustering observations with similar loadings.

See [MV] scoreplot for more examples of loadingplot and scoreplot.

- Technical note

The loading plots and score plots we have shown were for the original unrotated factor solution. After rotating (which we will discuss next), these plots display the most recent rotated solution. Specify option norotated to refer to the unrotated result. To display the plots of rotated and unrotated results at the same time, you may use either of the following two approaches. First, you may display them in different Graph windows.

```
. plotcmd, norotated name(name1)
. plotcmd, name(name2)
```

Alternatively, you may save the plots and create a combined graph

```
. plotcmd, norotated saving(name1)
```

. plotcmd, saving(name2)
. graph combine name1.gph name2.gph
See [G-2] graph combine for details.

Rotating the factor loadings

Rotation is an attempt to describe the information in several factors by reexpressing them so that loadings on a few variables are as large as possible, and loadings on the rest of the variables are as small as possible. We have this freedom to reexpress because of the indeterminant nature of the factor model. For example, if you find that \mathbf{z}_{1} and \mathbf{z}_{2} are two factors, then $\mathbf{z}_{1}+\mathbf{z}_{2}$ and $\mathbf{z}_{1}-\mathbf{z}_{2}$ are equally valid solutions.

- Technical note

Said more technically: we are trying to find a set of f factor variables such that the observed variables can be best explained by regressing them on the f factor variables. Usually, f is a small number such as 1 or 2 . If $f \geq 2$, there is an inherent indeterminacy in the construction of the factors because any linear combination of the calculated factors serves equally well as a set of regressors. Rotation capitalizes on this indeterminacy to create a set of variables that looks as much like the original variables as possible.

The rotate command modifies the results of the last factor or factormat command to create a set of loadings that are more interpretable than those produced by factor or factormat. You may perform one factor analysis followed by several rotate commands, thus experimenting with different types of rotation. If you retain too few factors, the variables for several distinct concepts may be merged, as in our example below. If you retain too many factors, several factors may attempt to measure the same concept, causing the factors to get in each other's way, suggesting too many distinct concepts after rotation.

- Technical note

It is possible to restrict rotation to a number of leading factors. For instance, if you extracted three factors, you may specify the option factors(2) to rotate to exclude the third factor from being rotated. The new two leading factors are combinations of the initial two leading factors and are not affected by the fixed factor.
> Example 7: Orthogonal varimax rotation
We return to our physician-cost example in [MV] factor and perform a factor analysis using the principal-component factor method, retaining two factors. We then tell rotate to apply the default orthogonal varimax rotation (Kaiser 1958).

```
. use https://www.stata-press.com/data/r18/bg2, clear
(Physician-cost data)
. quietly factor bg2cost1-bg2cost6, pcf factors(2)
. rotate
Factor analysis/correlation Number of obs = 568
    Method: principal-component factors Retained factors = 2
    Rotation: orthogonal varimax (Kaiser off) Number of params = 11
\begin{tabular}{c|rrrr}
\hline Factor & Variance & Difference & Proportion & Cumulative \\
\hline Factor1 & 1.57170 & 0.03430 & 0.2619 & 0.2619 \\
Factor2 & 1.53740 &. & 0.2562 & 0.5182 \\
\hline
\end{tabular}
LR test: independent vs. saturated: \(\operatorname{chi2}(15)=269.07\) Prob>chi2 \(=0.0000\) Rotated factor loadings (pattern matrix) and unique variances
```

Variable	Factor1	Factor2	Uniqueness
bg2cost1	0.6853	0.2300	0.4775
bg2cost2	-0.0126	0.7142	0.4898
bg2cost3	-0.0161	0.7818	0.3886
bg2cost4	-0.1502	0.5703	0.6521
bg2cost5	0.7292	-0.1198	0.4539
bg2cost6	0.7398	-0.1537	0.4290

Factor rotation matrix

	Factor1	Factor2
Factor1	0.7460	-0.6659
Factor2	0.6659	0.7460

Here the factors are rotated so that the three "negative" items are grouped together and the three "positive" items are grouped.

Look at the uniqueness column. Uniqueness is the percentage of variance for the variable that is not explained by the common factors; we may also think of it as the variances of the specific factors for the variables. We stress that rotation involves the "common factors", so the uniqueness is not affected by the rotation. As we noted in [MV] factor, the uniqueness is relatively high in this example, placing doubt on the usefulness of the factor model here.

> Example 8: More orthogonal varimax rotation

Here we examine 19 variables describing various aspects of health. These variables were collected from a random selection of 9,999 visitors to doctors' offices by Tarlov et al. (1989). Factor analysis yields three clear factors. We then examine several rotations of these three factors.
. use https://www.stata-press.com/data/r18/sp2
. describe
Contains data from https://www.stata-press.com/data/r18/sp2.dta
Observations: 9,999
Variables: $20 \quad 26$ Jan 2022 09:26
(_dta has notes)

Variable name	Storage type	Display format	Value label	Variable label
patid	int	$\% 9.0 \mathrm{~g}$		Case ID
ghp31	float	\%9.0g		Health excellent, very good, good, fair, poor
pf01	float	\%9.0g		How long limit vigorous activity
pf02	float	\%9.0g		How long limit moderate activity
pf03	float	\%9.0g		How long limit walk/climb
pf04	float	\%9.0g		How long limit bend/stoop
pf 05	float	$\% 9.0 \mathrm{~g}$		How long limit walk 1 block
pf06	float	\%9.0g		How long limit eat/dress/bath
rkeep	float	\%9.0g		Does health keep work-job-hse
rkind	float	\%9.0g		Can't do kind/amount of work
sact0	float	$\% 9.0 \mathrm{~g}$		Last month limit activities
mha01	float	\%9.0g		Last month very nervous
mhp03	float	$\% 9.0 \mathrm{~g}$		Last month calm/peaceful
mhd02	float	\%9.0g		Last month downhearted/blue
mhp01	float	\%9.0g		Last month a happy person
mhc01	float	\%9.0g		Last month down in the dumps
ghp01	float	\%9.0g		Somewhat ill
ghp04	float	\%9.0g		Healthy as anybody I know
ghp02	float	\%9.0g		Health is excellent
ghp05	float	\%9.0g		Feel bad lately

Sorted by: patid
We now perform our factorization, requesting that three factors be retained.

LR test: independent vs. saturated: $\operatorname{chi2}(171)=1.0 \mathrm{e}+05$ Prob>chi2 $=0.0000$
Factor loadings (pattern matrix) and unique variances

Variable	Factor1	Factor2	Factor3	Uniqueness
ghp31	-0.6519	-0.0562	0.3440	0.4535
pf01	0.6150	0.3226	-0.0072	0.5177
pf02	0.6867	0.3737	0.2175	0.3415
pf03	0.6712	0.3774	0.1621	0.3807
pf04	0.6540	0.3588	0.2268	0.3921
pf05	0.6209	0.3258	0.2631	0.4392
pf06	0.4370	0.1803	0.2241	0.7263
rkeep	0.6868	0.1820	0.0870	0.4876
rkind	0.7244	0.2464	0.0780	0.4085
sact0	0.6556	-0.0719	0.0461	0.5628
mha01	0.5297	-0.4773	0.1268	0.4755
mhp03	-0.4810	0.5691	-0.1238	0.4294
mhd02	0.5208	-0.5949	0.1623	0.3485
mhp01	-0.4980	0.5955	-0.1225	0.3824
mhc01	0.4927	-0.5215	0.1531	0.4618
ghp01	0.6686	0.0194	-0.3621	0.4215
ghp04	-0.6833	-0.0195	0.4089	0.3656
ghp02	-0.7398	-0.0227	0.4212	0.2748
ghp05	0.6163	-0.2760	-0.1626	0.5175

The first factor is a general health factor. (To understand that claim, compare the factor loadings with the description of the variables as shown by describe above. Also, just as with the physician-cost data, the sense of some of the coded responses is reversed.) The second factor loads most highly on the five "mental health" items. The third factor loads most highly on "general health perception" items-those with names having the letters ghp in them. The other items describe "physical health".

These designations are based primarily on the wording of the questions, which is summarized in the variable labels.

. rotate, varimax		
Factor analysis/correlation	Number of obs	$=$
Method: principal factors	Retained factors $=$	3,999
Rotation: orthogonal varimax (Kaiser off)	Number of params	$=$

Factor	Variance	Difference	Proportion	Cumulative
Factor1	4.20556	0.83302	0.4358	0.4358
Factor2	3.37253	0.33756	0.3495	0.7852
Factor3	3.03497	\cdot	0.3145	1.0997

LR test: independent vs. saturated: $\operatorname{chi2}(171)=1.0 \mathrm{e}+05 \operatorname{Prob}>\operatorname{chi2}=0.0000$
Rotated factor loadings (pattern matrix) and unique variances

Variable	Factor1	Factor2	Factor3	Uniqueness
ghp31	-0.2968	-0.1647	-0.6567	0.4535
pf01	0.5872	0.0263	0.3699	0.5177
pf02	0.7740	0.0848	0.2287	0.3415
pf03	0.7386	0.0580	0.2654	0.3807
pf04	0.7484	0.0842	0.2018	0.3921
pf05	0.7256	0.1063	0.1518	0.4392
pf06	0.5023	0.1268	0.0730	0.7263
rkeep	0.6023	0.2048	0.3282	0.4876
rkind	0.6590	0.1669	0.3597	0.4085
sact0	0.4187	0.3875	0.3342	0.5628
mha01	0.1467	0.6859	0.1803	0.4755
mhp03	-0.0613	-0.7375	-0.1514	0.4294
mhd02	0.0921	0.7893	0.1416	0.3485
mhp01	-0.0570	-0.7671	-0.1612	0.3824
mhc01	0.1102	0.7124	0.1359	0.4618
ghp01	0.2783	0.1977	0.6797	0.4215
ghp04	-0.2652	-0.1908	-0.7264	0.3656
ghp02	-0.2986	-0.2116	-0.7690	0.2748
ghp05	0.1755	0.4756	0.4748	0.5175

Factor rotation matrix

	Factor1	Factor2	Factor3
Factor1	0.6658	0.4796	0.5715
Factor2	0.5620	-0.8263	0.0387
Factor3	0.4908	0.2954	-0.8197

With rotation, the structure of the data becomes much clearer. The first rotated factor is physical health, the second is mental health, and the third is general health perception. The a priori designation of the items is confirmed.

After rotation, physical health is the first factor. rotate has ordered the factors by explained variance. Still, we warn that the importance of any factor must be gauged against the number of variables that purportedly measure it. Here we included nine variables that measured physical health, five that measured mental health, and five that measured general health perception. Had we started with only one mental health item, it would have had a high uniqueness, but we would not want to conclude that it was, therefore, largely noise.

- Technical note

Some people prefer specifying the option normalize to apply a Kaiser normalization (Horst 1965), which places equal weight on all rows of the matrix to be rotated.

> Example 9: Oblique oblimin rotation

The literature suggests that physical health and mental health are related. Also, general health perception may be largely a combination of the two. For these reasons, an oblique rotation of a two-factor solution is worth trying. We try the oblique oblimin rotation (Harman 1976).

LR test: independent vs. saturated: $\operatorname{chi2}(171)=1.0 \mathrm{e}+05$ Prob>chi2 $=0.0000$

Factor loadings (pattern matrix) and unique variances

Variable	Factor1	Factor2	Uniqueness
ghp31	-0.6519	-0.0562	0.5718
pf01	0.6150	0.3226	0.5178
pf02	0.6867	0.3737	0.3888
pf03	0.6712	0.3774	0.4070
pf04	0.6540	0.3588	0.4435
pf05	0.6209	0.3258	0.5084
pf06	0.4370	0.1803	0.7765
rkeep	0.6868	0.1820	0.4952
rkind	0.7244	0.2464	0.4145
sact0	0.6556	-0.0719	0.5650
mha01	0.5297	-0.4773	0.4916
mhp03	-0.4810	0.5691	0.4448
mhd02	0.5208	-0.5949	0.3748
mhp01	-0.4980	0.5955	0.3974
mhc01	0.4927	-0.5215	0.4853
ghp01	0.6686	0.0194	0.5526
ghp04	-0.6833	-0.0195	0.5327
ghp02	-0.7398	-0.0227	0.4522
ghp05	0.6163	-0.2760	0.5439

. rotate, oblimin oblique
Factor analysis/correlation \quad Number of obs $=$ 9,999
Method: principal factors
Retained factors $=\quad 2$
Rotation: oblique oblimin (Kaiser off)
Number of params = 37

Factor	Variance	Proportion	Rotated factors are correlated
Factor1	6.58719	0.6826	
Factor2	4.65444	0.4823	

LR test: independent vs. saturated: chi2 (171) $=1.0 \mathrm{e}+05$ Prob>chi2 $=0.0000$ Rotated factor loadings (pattern matrix) and unique variances

Variable	Factor1	Factor2	Uniqueness
ghp31	-0.5517	-0.2051	0.5718
pf01	0.7179	-0.0747	0.5178
pf02	0.8115	-0.0968	0.3888
pf03	0.8022	-0.1068	0.4070
pf04	0.7750	-0.0951	0.4435
pf05	0.7249	-0.0756	0.5084
pf06	0.4743	-0.0044	0.7765
rkeep	0.6712	0.0939	0.4952
rkind	0.7478	0.0449	0.4145
sact0	0.4608	0.3340	0.5650
mha01	0.0652	0.6869	0.4916
mhp03	0.0401	-0.7587	0.4448
mhd02	-0.0280	0.8003	0.3748
mhp01	0.0462	-0.7918	0.3974
mhc01	0.0039	0.7160	0.4853
ghp01	0.5378	0.2484	0.5526
ghp04	-0.5494	-0.2541	0.5327
ghp02	-0.5960	-0.2736	0.4522
ghp05	0.2805	0.5213	0.5439

Factor rotation matrix

	Factor1	Factor2
Factor1	0.9277	0.6831
Factor2	0.3733	-0.7303

The first factor is defined predominantly by physical health and the second by mental health. General health perception loads on both, but more on physical health than mental health. To compare the rotated and unrotated solution, looking at both in parallel form is often useful.

Rotation matrix - oblique oblimin (Kaiser off)				
Variable	Factor1	Factor2		
Factor1	0.9277	0.6831		
Factor2	0.3733	-0.7303		
Factor loadings				
	Rotated		Unrotated	
Variable	Factor1	Factor2	Factor1	Factor2
ghp31	-0.5517	-0.2051	-0.6519	-0.0562
pf01	0.7179	-0.0747	0.6150	0.3226
pf02	0.8115	-0.0968	0.6867	0.3737
pf03	0.8022	-0.1068	0.6712	0.3774
pf04	0.7750	-0.0951	0.6540	0.3588
pf05	0.7249	-0.0756	0.6209	0.3258
pf06	0.4743	-0.0044	0.4370	0.1803
rkeep	0.6712	0.0939	0.6868	0.1820
rkind	0.7478	0.0449	0.7244	0.2464
sact0	0.4608	0.3340	0.6556	-0.0719
mha01	0.0652	0.6869	0.5297	-0.4773
mhp03	0.0401	-0.7587	-0.4810	0.5691
mhd02	-0.0280	0.8003	0.5208	-0.5949
mhp01	0.0462	-0.7918	-0.4980	0.5955
mhc01	0.0039	0.7160	0.4927	-0.5215
ghp01	0.5378	0.2484	0.6686	0.0194
ghp04	-0.5494	-0.2541	-0.6833	-0.0195
ghp02	-0.5960	-0.2736	-0.7398	-0.0227
ghp05	0.2805	0.5213	0.6163	-0.2760

Look again at the factor output. The variances of the first and second factor of the unrotated solution are 7.27 and 2.37 , respectively. After an orthogonal rotation, the explained variance of $7.27+2.37$ is distributed differently over the two factors. For instance, if we typed rotate, varimax to obtain an orthogonal varimax rotation, we would see that the first factor has variance 5.75 , and the second factor has 3.88 -within rounding error $7.27+2.37=5.75+3.88$. The situation after an oblique rotation is different. The variances of the first and second factors are 6.59 and 4.65 , which add up to more than in the orthogonal case. In the oblique case, the common factors are correlated and thus "partly explain the same variance". Therefore, the cumulative proportion of variance explained by the factors is not displayed here.

Most researchers would not be willing to accept a solution in which the common factors are highly correlated.

```
. estat common
Correlation matrix of the oblimin(0) rotated common factors
```

Factors	Factor1	Factor2
Factor1	1	
Factor2	.3611	1

The correlation of .36 seems acceptable, so we think that the oblique rotation was a success here.

Factor scores

The predict command creates a set of new variables that are estimates of the first k common factors produced by factor, factormat, or rotate. Two types of scoring are available: regression or Thomson scoring and Bartlett scoring.

The number of variables may be less than the number of factors. If so, the first such factors will be used. If the number of variables is greater than the number of factors created or rotated, the unused factors will be filled with missing values.

> Example 10: Predicting scores

Using our automobile data, we wish to develop an index of roominess on the basis of a car's headroom, rear-seat leg room, and trunk space. We begin by extracting the factors of the three variables:

```
. use https://www.stata-press.com/data/r18/autofull
(Automobile models)
. factor headroom rear_seat trunk
(obs=74)
Factor analysis/correlation Number of obs = 74
    Method: principal factors Retained factors = 1
    Rotation: (unrotated) Number of params = 3
```

Factor	Eigenvalue	Difference	Proportion	Cumulative
Factor1	1.71426	1.79327	1.1799	1.1799
Factor2	-0.07901	0.10329	-0.0544	1.1255
Factor3	-0.18231	\cdot	-0.1255	1.0000
LR test: independent vs. saturated: chi2(3)	$=$	82.93 Prob>chi2 $=0.0000$		

Factor loadings (pattern matrix) and unique variances

Variable	Factor1	Uniqueness
headroom	0.7280	0.4700
rear_seat	0.7144	0.4897
trunk	0.8209	0.3261

All the factor loadings are positive, so we have indeed obtained a "roominess" factor. The predict command will now create the one retained factor, which we will call $f 1$:

```
. predict f1
(option regression assumed; regression scoring)
Scoring coefficients (method = regression)
```

Variable	Factor1
headroom	0.28323
rear_seat	0.26820
trunk	0.45964

The table with scoring coefficients informs us that the factor is obtained as a weighted sum of standardized versions of headroom, rear_seat, and trunk with weights $0.28,0.27$, and 0.46 .

If factor had retained more than one factor, typing predict $f 1$ would still have added only the first factor to our data. Typing predict $f 1 \mathrm{f} 2$, however, would have added the first two factors to our data. $f 1$ is now our "roominess" index, so we might compare the roominess of domestic and foreign cars:
. table foreign, statistic(mean f1) statistic(sd f1)

	Mean	Standard deviation
Foreign		
\quad Domestic	.2022442	.9031404
Foreign	-.4780318	.6106609
Total	$4.51 \mathrm{e}-09$.8804116

We find that domestic cars are, on average, roomier than foreign cars, at least in our data.

- Technical note

Are common factors not supposed to be normalized to have mean 0 and standard deviation 1? In our example above, the mean is 4.5×10^{-9} and the standard deviation is 0.88 . Why is that?

For the mean, the deviation from zero is due to numerical roundoff, which would diminish dramatically if we had typed predict double $f 1$ instead. The explanation for the standard deviation of 0.88 , on the other hand, is not numerical roundoff. At a theoretical level, the factor is supposed to have standard deviation 1, but the estimation method almost never yields that result unless an exact solution to the factor model is found. This happens for the same reason that, when you regress y on x, you do not get the same equation as if you regress x on y, unless x and y are perfectly collinear.

By the way, if you had two factors, you would expect the correlation between the two factors to be zero because that is how they are theoretically defined. The matrix algebra, however, does not usually work out that way. It is somewhat analogous to the fact that if you regress y on x and the regression assumption that the errors are uncorrelated with the dependent variable is satisfied, then it automatically cannot be satisfied if you regress x on y.

The covariance matrix of the estimated factors is

$$
E\left(\widehat{\mathbf{f}} \widehat{\mathbf{f}}^{\prime}\right)=\mathbf{I}-(\mathbf{I}+\boldsymbol{\Gamma})^{-1}
$$

where

$$
\boldsymbol{\Gamma}=\boldsymbol{\Lambda}^{\prime} \boldsymbol{\Psi}^{-1} \boldsymbol{\Lambda}
$$

The columns of $\boldsymbol{\Lambda}$ are orthogonal to each other, but the inclusion of $\boldsymbol{\Psi}$ in the middle of the equation destroys that relationship unless all the elements of Ψ are equal.

> Example 11: Rescaling the scores

Let's pretend that we work for the K. E. Watt Company, a fictional industry group that generates statistics on automobiles. Our "roominess" index has mean 0 and standard deviation 0.88 , but indexes we present to the public generally have mean 100 and standard deviation 10. First, we wish to rescale our index:

```
. generate roomidx = (f1/.88041161)*10 + 100
. table foreign, statistic(mean roomidx) statistic(sd roomidx) statistic(freq)
> nformat(%9.2f)
```

	Mean	Standard deviation	Frequency
Foreign			
\quad Domestic	102.30	10.26	52.00
Foreign	94.57	6.94	22.00
Total	100.00	10.00	74.00

Now when we release our results, we can write, "The K. E. Watt index of roominess shows that domestic cars are, on average, roomier, with an index of 102 versus only 95 for foreign cars."

Now let's find the "roomiest" car in our data:

```
. sort roomidx
. list fullname roomidx in l
```

74.

fullname	roomidx
Merc. Marquis	116.7469

We can also write, "K. E. Watt finds that the Mercury Marquis is the roomiest automobile among those surveyed, with a roominess index of 117 versus an average of $100 . "$

- Technical note

predict provides two methods of scoring: the default regression scoring, which we have used above, and the optional Bartlett method. An artificial example will best illustrate the use and meaning of the methods. We begin by creating a known-to-be-correct factor model in which the true loadings are $0.4,0.6$, and 0.8 . The variances of the unique factors are $1-0.4^{2}=0.84,1-0.6^{2}=0.64$, and $1-0.8^{2}=0.36$, respectively. We make the sample size large enough so that random fluctuations are not important.

```
. drop _all
```

. set seed 12345
. set obs 10000
Number of observations (_N) was 0, now 10,000.

- generate ftrue = rnormal()
. generate $\mathrm{x} 1=.4 * \mathrm{ftrue}+\operatorname{sqrt}(.84) *$ rnormal ()

Variable	Obs	Mean	Std. dev.	Min	Max
x1	10,000	. 0195519	1.011165	-3.778123	4.267452
x2	10,000	. 0127835	1.001259	-3.828994	4.102375
x3	10,000	. 0058335	1.002475	-3.595906	3.89754

Because we concocted our data, the iterated principal-factor method reproduces the true loadings most faithfully:

```
. factor x1 x2 x3, ipf factors(1)
(obs=10,000)
Factor analysis/correlation Number of obs = 10,000
    Method: iterated principal factors Retained factors = 1
    Rotation: (unrotated) Number of params = 3
```

Factor	Eigenvalue	Difference	Proportion	Cumulative
Factor1	1.16678	1.16662	1.0000	1.0000
Factor2	0.00016	0.00036	0.0001	1.0002
Factor3	-0.00020	.	-0.0002	1.0000

LR test: independent vs. saturated: chi2(3) $=3887.29$ Prob>chi2 $=0.0000$
Factor loadings (pattern matrix) and unique variances

Variable	Factor1	Uniqueness
x1	0.4156	0.8273
x2	0.6046	0.6345
x3	0.7928	0.3715

Let us now compare regression and Bartlett scoring:

```
. predict freg
(option regression assumed; regression scoring)
Scoring coefficients (method = regression)
```

Variable	Factor1
x1	0.14449
x2	0.27410
x3	0.61377

- predict fbar, bartlett

Scoring coefficients (method = Bartlett)

Variable	Factor1
x1	0.20285
x2	0.38475
x3	0.86162

Comparing the two scoring vectors, we see that Bartlett scoring yields larger coefficients. The regression scoring method is biased insofar as E (freg|ftrue) is not ftrue, something we can reveal by regressing freg on ftrue:
. regress freg ftrue

Source	SS	df	MS
Model Residual	5107.57467	1	5107.57467
Total	7122.84138	9,999	.712355374

Number of obs	$=$	10,000
$\mathrm{~F}(1$, 9998)	$=$	25339.34
Prob > F	$=$	0.0000
R-squared	$=$	0.7171
Adj R-squared	$=$	0.7170
Root MSE	$=$.44896

freg	Coefficient	Std. err.	t	$\mathrm{P}>\mid \mathrm{tl}$	[95\% conf. interval]	
ftrue	.7169557	.004504	159.18	0.000	.708127	.7257843
_cons	-.0088417	.00449	-1.97	0.049	-.0176429	-.0000404

Note the coefficient on ftrue of $0.717<1$. The Bartlett scoring method, on the other hand, is unbiased:

Source	SS	df	MS	Number of obs	$=$	10,000
				F (1, 9998)	=	25339.33
Model	10065.1734	1	10065.1734	Prob > F	=	0.0000
Residual	3971.35998	9,998	. 397215441	R-squared	=	0.7171
				Adj R-squared	=	0.7170
Total	14036.5334	9,999	1.40379372	Root MSE	=	. 63025

fbar	Coefficient	Std. err.	t	$\mathrm{P}>\|\mathrm{tl}\|$	[95\% conf. interval]	
ftrue	1.006458	.0063226	159.18	0.000	.9940642	1.018851
_cons	-.0124119	.006303	-1.97	0.049	-.024767	-.0000568

The zero bias of the Bartlett method comes at the costs of less accuracy, for example, in terms of the mean squared error.

Variable	Obs	Mean	Std. dev.	Min	Max
ftrue	10,000	. 0123322	. 996866	-4.196032	3.815439
fbar	10,000	$2.08 \mathrm{e}-10$	1.184818	-3.78561	4.550449
freg	10,000	-6.44e-10	. 8440115	-2.696714	3.241498
dbar	10,000	. 3973295	. 5654751	$1.31 \mathrm{e}-09$	7.656609
dreg	10,000	. 2812835	. 4053233	$9.68 \mathrm{e}-10$	4.814044

Neither estimator follows the assumption that the scaled factor has unit variance. The regression estimator has a variance less than 1, and the Bartlett estimator has a variance greater than 1.
The difference between the two scoring methods is not as important as it might seem because the bias in the regression method is only a matter of scaling and shifting.

```
. correlate freg fbar ftrue
(obs=10,000)
```

	freg	fbar	ftrue
freg	1.0000		
fbar	1.0000	1.0000	
ftrue	0.8468	0.8468	1.0000

Therefore, the choice of which scoring method we apply is largely immaterial.

Stored results

Let p be the number of variables and f, the number of factors.
predict, in addition to generating variables, also stores the following in r() :
Macros
r (method) regression or Bartlett
Matrices
r (scoef) $\quad p \times f$ matrix of scoring coefficients
estat anti stores the following in $r()$:
Matrices
r (acov) $\quad p \times p$ anti-image covariance matrix
r (acorr) $\quad p \times p$ anti-image correlation matrix
estat common stores the following in r() :
Matrices
r (Phi) $\quad f \times f$ correlation matrix of common factors
estat factors stores the following in $r()$:
Matrices
r (stats) $\quad k \times 5$ matrix with \log likelihood, degrees of freedom, AIC, and BIC for models with 1 to k factors estimated via maximum likelihood
estat kmo stores the following in $r()$:
Scalars r (kmo) the Kaiser-Meyer-Olkin measure of sampling adequacy
Matrices r (kmow) column vector of KMO measures for each variable
estat residuals stores the following in $r()$:
Matrices $r(f i t) \quad$ fitted matrix for the correlations, $\widehat{\mathbf{C}}=\widehat{\boldsymbol{\Lambda}} \widehat{\boldsymbol{\Phi}} \widehat{\boldsymbol{\Lambda}}^{\prime}+\widehat{\boldsymbol{\Psi}}$ $r($ res $) \quad$ raw residual matrix $\mathbf{C}-\widehat{\mathbf{C}}$ $r(S R) \quad$ standardized residuals (sresiduals option only)
estat smc stores the following in $r()$:
Matrices $r(\mathrm{smc}) \quad$ vector of squared multiple correlations of variables with all other variables
estat structure stores the following in $r()$:
Matrices $\mathrm{r}(\mathrm{st}) \quad p \times f$ matrix of correlations between variables and common factors

See [R] estat summarize for the stored results of estat summarize.
rotate after factor and factormat add to the existing e():
Scalars
e(r_f) number of factors in rotated solution
$e\left(r _f m i n\right) \quad$ rotation criterion value
Macros
e(r_class) orthogonal or oblique
e (r_criterion) rotation criterion
e(r_ctitle) title for rotation
e(r_normalization) kaiser or none
Matrices
e(r_L) rotated loadings
$e\left(r_{-} T\right)$ rotation
e(r_Phi) correlations between common factors
$e\left(r _E v\right) \quad$ explained variance by common factors
The factors in the rotated solution are in decreasing order of e(r_Ev).

Methods and formulas

Methods and formulas are presented under the following headings:

```
estat
rotate
predict
```


estat

See Methods and formulas of [MV] pca postestimation for the formulas for estat anti, estat kmo, and estat smc.
estat residuals computes the standardized residuals $\widetilde{r}_{i j}$ as

$$
\widetilde{r}_{i j}=\frac{\sqrt{N}\left(r_{i j}-f_{i j}\right)}{\sqrt{f_{i j}^{2}+f_{i i} f_{j j}}}
$$

suggested by Jöreskog and Sörbom (1986), where N is the number of observations, $r_{i j}$ is the observed correlation of variables i and j, and $f_{i j}$ is the fitted correlation of variables i and j. Also see Bollen (1989). Caution is warranted in interpretation of these residuals; see Jöreskog and Sörbom (1988).
estat structure computes the correlations of the variables and the common factors as $\boldsymbol{\Lambda \Phi}$.

rotate

See Methods and formulas of [MV] rotatemat for the details of rotation.
The correlation of common factors after rotation is $\mathbf{T}^{\prime} \mathbf{T}$, where \mathbf{T} is the factor rotation matrix, satisfying $\mathbf{L}_{\text {rotated }}=\mathbf{L}_{\text {unrotated }}\left(\mathbf{T}^{\prime}\right)^{-1}$

predict

The formula for regression scoring (Thomson 1951) in the orthogonal case is

$$
\widehat{\mathbf{f}}=\boldsymbol{\Lambda}^{\prime} \boldsymbol{\Sigma}^{-1} \mathbf{x}
$$

where $\boldsymbol{\Lambda}$ is the unrotated or orthogonally rotated loading matrix. For oblique rotation, the regression scoring is defined as

$$
\widehat{\mathbf{f}}=\boldsymbol{\Phi} \boldsymbol{\Lambda}^{\prime} \boldsymbol{\Sigma}^{-1} \mathbf{x}
$$

where $\boldsymbol{\Phi}$ is the correlation matrix of the common factors.
The formula for Bartlett scoring (Bartlett 1937, 1938) is

$$
\boldsymbol{\Gamma}^{-1} \boldsymbol{\Lambda}^{\prime} \boldsymbol{\Psi}^{-1} \mathbf{x}
$$

where

$$
\boldsymbol{\Gamma}=\boldsymbol{\Lambda}^{\prime} \boldsymbol{\Psi}^{-1} \boldsymbol{\Lambda}
$$

See Harman (1976) and Lawley and Maxwell (1971).

References

Akaike, H. 1987. Factor analysis and AIC. Psychometrika 52: 317-332. https://doi.org/10.1007/BF02294359.
Baldwin, S. 2019. Psychological Statistics and Psychometrics Using Stata. College Station, TX: Stata Press.
Bartlett, M. S. 1937. The statistical conception of mental factors. British Journal of Psychology 28: 97-104. https://doi.org/10.1111/j.2044-8295.1937.tb00863.x.
_-. 1938. Methods of estimating mental factors. Nature 141: 609-610.
Bollen, K. A. 1989. Structural Equations with Latent Variables. New York: Wiley.
Cattell, R. B. 1966. The scree test for the number of factors. Multivariate Behavioral Research 1: 245-276. https://doi.org/10.1207/s15327906mbr0102_10.
Harman, H. H. 1976. Modern Factor Analysis. 3rd ed. Chicago: University of Chicago Press.
Horst, P. 1965. Factor Analysis of Data Matrices. New York: Holt, Rinehart and Winston.
Jöreskog, K. G., and D. Sörbom. 1986. Lisrel VI: Analysis of linear structural relationships by the method of maximum likelihood. Mooresville, IN: Scientific Software.
__. 1988. PRELIS: A program for multivariate data screening and data summarization. A preprocessor for LISREL. 2nd ed. Mooresville, IN: Scientific Software.

Kaiser, H. F. 1958. The varimax criterion for analytic rotation in factor analysis. Psychometrika 23: 187-200. https://doi.org/10.1007/BF02289233.
__. 1974. An index of factor simplicity. Psychometrika 39: 31-36.
Lawley, D. N., and A. E. Maxwell. 1971. Factor Analysis as a Statistical Method. 2nd ed. London: Butterworths.
Schwarz, G. 1978. Estimating the dimension of a model. Annals of Statistics 6: 461-464. https://doi.org/10.1214/aos/1176344136.
Tarlov, A. R., J. E. Ware, Jr., S. Greenfield, E. C. Nelson, E. Perrin, and M. Zubkoff. 1989. The medical outcomes study. An application of methods for monitoring the results of medical care. Journal of the American Medical Association 262: 925-930. https://doi.org/10.1001/jama.1989.03430070073033.
Thomson, G. H. 1951. The Factorial Analysis of Human Ability. London: University of London Press.
Also see References in [MV] factor.

Also see

[MV] factor - Factor analysis
[MV] rotate - Orthogonal and oblique rotations after factor and pca
[MV] scoreplot - Score and loading plots
[MV] screeplot - Scree plot of eigenvalues
[U] 20 Estimation and postestimation commands

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Organization of the United Nations. StataNow and NetCourseNow are trademarks of StataCorp LLC. Other brand and product names are registered trademarks or trademarks of their respective companies. Copyright (c) 1985-2023 StataCorp LLC, College Station, TX,
 USA. All rights reserved.

For suggested citations, see the FAQ on citing Stata documentation.

