clustermat - Introduction to clustermat commands

Description Syntax Remarks and examples References Also see

Description

clustermat performs hierarchical cluster analysis on the dissimilarity matrix matname. clustermat is part of the cluster suite of commands; see [MV] cluster. All Stata hierarchical clustering methods are allowed with clustermat. The partition-clustering methods (kmeans and kmedians) are not allowed because they require the data.

See [MV] cluster for a listing of all the cluster and clustermat commands. The cluster dendrogram command (see [MV] cluster dendrogram) will display the resulting dendrogram, the clustermat stop command (see [MV] cluster stop) will help in determining the number of groups, and the cluster generate command (see [MV] cluster generate) will produce grouping variables. Other useful cluster subcommands include notes, dir, list, drop, use, rename, and renamevar; see [MV] cluster notes and [MV] cluster utility.

Syntax

clustermat linkage matname ...

linkage

Description

```
singlelinkage
```

averagelinkage
completelinkage
waveragelinkage
medianlinkage
centroidlinkage
wardslinkage

```
single-linkage cluster analysis average-linkage cluster analysis complete-linkage cluster analysis weighted-average linkage cluster analysis median-linkage cluster analysis centroid-linkage cluster analysis Ward's linkage cluster analysis
```

See [MV] cluster linkage.
clustermat stop has similar syntax to that of cluster stop; see [MV] cluster stop. For the remaining postclustering subcommands and user utilities, you may specify either cluster or clustermat-it does not matter which.

Remarks and examples

If you are clustering observations by using one of the similarity or dissimilarity measures provided by Stata, the cluster command is what you need. If, however, you already have a dissimilarity matrix or can produce one for a dissimilarity measure that Stata does not provide, or if you want to cluster variables instead of observations, the clustermat command is what you need.

> Example 1

Table 6 of Kaufman and Rousseeuw (1990) provides a subjective dissimilarity matrix among 11 sciences. Fourteen postgraduate economics students from different parts of the world gave subjective dissimilarities among these 11 sciences on a scale from 0 (identical) to 10 (very different). The final dissimilarity matrix was obtained by averaging the results from the students.

We begin by creating a label variable and a shorter version of the label variable corresponding to the 11 sciences. Then we create a row vector containing the lower triangle of the dissimilarity matrix.

```
. input str13 science
                science
    1. Astronomy
    2. Biology
    3. Chemistry
    4. Computer sci.
    5. Economics
    6. Geography
    7. History
    8. Mathematics
    9. Medicine
10. Physics
11. Psychology
12. end
. generate str4 shortsci = substr(science,1,4)
. matrix input D = (
> 0.00
> 7.86 0.00
> 6.50 2.93 0.00
> 5.00 6.86 6.50 0.00
> 8.00 8.14 8.21 4.79 0.00
> 4.29 7.00 7.64 7.71 5.93 0.00
> 8.07 8.14 8.71 8.57 5.86 3.86 0.00
> 3.64 7.14 4.43 1.43 3.57 7.07 9.07 0.00
> 8.21 2.50 2.93 6.36 8.43 7.86 8.43 6.29 0.00
> 2.71 5. 21 4.57 4.21 8.36 7.29 8.64 2.21 5.07 0.00
> 9.36 5.57 7.29 7.21 6.86 8.29 7.64 8.71 3.79 8.64 0.00 )
```

There are several ways that we could have stored the dissimilarity information in a matrix. To avoid entering both the upper and lower triangle of the matrix, we entered the dissimilarities as a row vector containing the lower triangular entries of the dissimilarity matrix, including the diagonal of zeros (although there are options that would allow us to omit the diagonal of zeros). We typed matrix input $D=\ldots$ instead of matrix $D=\ldots$ so that we could omit the commas between entries; see $[\mathrm{P}]$ matrix define.

We now perform a complete-linkage cluster analysis on these dissimilarities. The name() option names the cluster analysis. We will name it complink. The shape(lower) option is what signals that the dissimilarity matrix is stored as a row vector containing the lower triangle of the dissimilarity matrix, including the diagonal of zeros. The add option indicates that the resulting cluster information should be added to the existing dataset. Here the existing dataset consists of the science label variable and the shortened version shortsci. See [MV] cluster linkage for details concerning these options. The short labels are passed to cluster dendrogram so that we can see which subjects were most closely related when viewing the dendrogram; see [MV] cluster dendrogram.

```
. clustermat completelinkage D, shape(lower) add name(complink)
. cluster dendrogram complink, labels(shortsci)
> title(Complete-linkage clustering)
> ytitle("Subjective dissimilarity" "0 = Same, 10 = Very different")
```

Complete-linkage clustering

From the dendrogram, we see that mathematics and computer science were deemed most similar and that the economists most closely related their field of study to those two disciplines.

> Example 2

Stata does not provide the Bray and Curtis (1957) dissimilarity measure first described by Odum (1950). Using the same notation as that found in [MV] measure_option, we find that the Bray-Curtis dissimilarity between observations i and j is

$$
\frac{\sum_{a=1}^{p}\left|x_{i a}-x_{j a}\right|}{\sum_{a=1}^{p}\left(x_{i a}+x_{j a}\right)}
$$

Stata does not provide this measure because of the many cases where the measure is undefined (because of dividing by zero). However, when the data are positive the Bray-Curtis dissimilarity is well behaved.

Even though Stata does not automatically provide this measure, it is easy to obtain it and then use it with clustermat to perform hierarchical clustering. The numerator of the Bray-Curtis dissimilarity measure is the L1 (absolute value) distance. We use the matrix dissimilarity command (see [MV] matrix dissimilarity) to obtain the L1 dissimilarity matrix and then divide the elements of that matrix by the appropriate values to obtain the Bray-Curtis dissimilarity.

Fisher (1936) presented data, originally from Anderson (1935), on three species of iris. Measurements of the length and width of the sepal and petal were obtained for 50 samples of each of the three iris species. We obtained the data from Morrison (2005). Here we demonstrate average-linkage clustering of these 150 observations.

```
. use https://www.stata-press.com/data/r18/iris, clear
(Iris data)
```

. summarize seplen sepwid petlen petwid

Variable	Obs	Mean	Std. dev.	Min	Max
seplen	150	5.843333	.8280661	4.3	7.9
sepwid	150	3.057333	.4358663	2	4.4
petlen	150	3.758	1.765298	1	6.9
petwid	150	1.199333	.7622377	.1	2.5

. matrix dissimilarity irisD = seplen sepwid petlen petwid, L1
. egen rtot $=$ rowtotal (seplen sepwid petlen petwid)
. forvalues $a=1 / 150$ \{
2. forvalues $b=1 / 150$ \{
3. $\operatorname{mat} \operatorname{irisD}[' a ', ' b ']=\operatorname{irisD}[' a ', ' b '] /(r \operatorname{tot}[' a ']+r t o t[' b '])$
4. \}
5. \}
. matlist irisD[1..5,1..5]

	obs1	obs2	obs3	obs4	obs5
obs1	0				
obs2	.035533	0			
obs3	.0408163	.026455	0	0	
obs4	.0510204	.026455	.0212766	0	
obs5	.0098039	.035533	.0408163	.0510204	0

The egen rowtotal () function provided the row totals used in the denominator of the Bray-Curtis dissimilarity measure; see [D] egen. We listed the dissimilarities between the first 5 observations.

We now compute the average-linkage cluster analysis on these 150 observations (see [MV] cluster linkage) and examine the Caliński-Harabasz pseudo-F index and the Duda-Hart $\mathrm{Je}(2) / \mathrm{Je}(1)$ index (cluster stopping rules; see [MV] cluster stop) to try to determine the number of clusters.
. clustermat averagelink irisD, name(iris) add
. clustermat stop, variables(seplen sepwid petlen petwid)

Number of clusters	Calinski/ Harabasz pseudo-F
2	502.82
3	299.96
4	201.58
5	332.89
6	288.61
7	244.61
8	252.39
9	223.28
10	268.47
11	241.51
12	232.61
13	233.46
14	255.84
15	273.96

```
. clustermat stop, variables(seplen sepwid petlen petwid) rule(duda)
```

Number of clusters	Duda/Hart	
	$\mathrm{Je}(2) / \mathrm{Je}(1)$	pseudo T -squared
1	0.2274	502.82
2	0.8509	17.18
3	0.8951	5.63
4	0.4472	116.22
5	0.6248	28.23
6	0.9579	2.55
7	0.5438	28.52
8	0.8843	5.10
9	0.5854	40.37
10	0.0000	.
11	0.8434	6.68
12	0.4981	37.28
13	0.5526	25.91
14	0.6342	16.15
15	0.6503	3.23

The stopping rules are not conclusive here. From the Duda-Hart pseudo- T^{2} (small values) you might best conclude that there are three, six, or eight natural clusters. The Caliński and Harabasz pseudo- F (large values) indicates that there might be two, three, or five groups.

With the iris data, we know the three species. Let's compare the average-linkage hierarchical cluster solutions with the actual species. The cluster generate command (see [MV] cluster generate) will generate grouping variables for our hierarchical cluster analysis.

```
. cluster generate g = groups(2/6)
```

. tabulate g2 iris

g2	Setosa	Versicolo	Virginica	Total
1	50	0	0	50
2	0	50	50	100
Total	50	50	50	150

. tabulate g3 iris

g3	Setosa	Versicolo	Virginica	Total
1	50	0	0	50
2	0	46	50	96
3	0	4	0	4
Total	50	50	50	150

. tabulate g4 iris

g4	Iris species			Total
1	49	0	0	49
2	1	0	0	1
3	0	46	50	96
4	0	4	0	4
Total	50	50	50	150

The two-group cluster solution splits Iris setosa from Iris versicolor and Iris virginica. The threeand four-group cluster solutions appear to split off some outlying observations from the two main groups. The five-group solution finally splits most of Iris virginica from the Iris versicolor but leaves some overlap.

Though this is not shown here, cluster solutions that better match the known species can be found by using dissimilarity measures other than Bray-Curtis.

> Example 3

The cluster command clusters observations. If you want to cluster variables, you have two choices. You can use xpose (see [D] xpose) to transpose the variables and observations, or you can use matrix dissimilarity with the variables option (see [MV] matrix dissimilarity) and then use clustermat.

In example 2 of [MV] cluster kmeans and kmedians, we introduce the women's club data. Thirty women were asked 35 yes-no questions. In [MV] cluster kmeans and kmedians, our interest was in clustering the 30 women for placement at luncheon tables. Here our interest is in understanding the relationship among the 35 variables. Which questions produced similar response patterns from the 30 women?

```
. use https://www.stata-press.com/data/r18/wclub, clear
. describe
Contains data from https://www.stata-press.com/data/r18/wclub.dta
    Observations: 30
    Variables: }351\mathrm{ May 2022 16:56
```

| Variable
 name | Storage
 type | Display
 format | Value
 label |
| :--- | :--- | :--- | :--- | | Variable label |
| :--- |
| bike |
| bowl |
| bwim |

Sorted by:
The matrix dissimilarity command allows us to compute the Jaccard similarity measure (the Jaccard option), comparing variables (the variables option) instead of observations, saving one minus the Jaccard measure (the dissim(oneminus) option) as a dissimilarity matrix.

```
. matrix dissimilarity clubD = , variables Jaccard dissim(oneminus)
```

. matlist clubD[1..5,1..5]

	bike	bowl	swim	jog	hock
bike	0				
bowl	.7333333	0			
swim	.5625	.625	0	0	
jog	.6	.8235294	.5882353	0	

We pass the clubD matrix to clustermat and ask for a single-linkage cluster analysis. We need to specify the clear option to replace the 30 observations currently in memory with the 35 observations containing the cluster results. Using the labelvar () option, we also ask for a label variable, question, to be created from the clubD matrix row names. To see the resulting cluster analysis, we call cluster dendrogram; see [MV] cluster dendrogram.

```
. clustermat singlelink clubD, name(club) clear labelvar(question)
Number of observations (_N) was 0, now 35.
. describe
Contains data
    Observations: 35
        Variables: 4
\begin{tabular}{lllll}
\hline \begin{tabular}{r} 
Variable \\
name
\end{tabular} & \begin{tabular}{r} 
Storage \\
type
\end{tabular} & \begin{tabular}{c} 
Display \\
format
\end{tabular} & \begin{tabular}{c} 
Value \\
label
\end{tabular} & Variable label \\
\hline club_id & byte & \(\% 8.0 \mathrm{~g}\) & & \\
club_ord & byte & \(\% 8.0 \mathrm{~g}\) & & \\
club_hgt & double \(\% 10.0 \mathrm{~g}\) & & \\
question & str4 & \(\% 9 \mathrm{~s}\) & & \\
\hline
\end{tabular}
```

Sorted by:
Note: Dataset has changed since last saved.
. cluster dendrogram club, labels(question)
$>\quad x l a b e l($, angle(90) labsize(*.75))
> title(Single-linkage clustering)
> ytitle(1 - Jaccard similarity, suffix)

Single-linkage clustering

From these 30 women, we see that the biog (enjoy reading biographies) and hist (enjoy reading history) questions were most closely related. auto (enjoy automobile mechanics), hors (have a horse), and bird (have a bird) seem to be the least related to the other variables. These three variables, in turn, merge last into the supergroup containing the remaining variables.

References

Anderson, E. 1935. The irises of the Gaspé Peninsula. Bulletin of the American Iris Society 59: 2-5.
Bray, R. J., and J. T. Curtis. 1957. An ordination of the upland forest communities of southern Wisconsin. Ecological Monographs 27: 325-349. https://doi.org/10.2307/1942268.
Fisher, R. A. 1936. The use of multiple measurements in taxonomic problems. Annals of Eugenics 7: 179-188. https://doi.org/10.1111/j.1469-1809.1936.tb02137.x.

Kaufman, L., and P. J. Rousseeuw. 1990. Finding Groups in Data: An Introduction to Cluster Analysis. New York: Wiley.
Morrison, D. F. 2005. Multivariate Statistical Methods. 4th ed. Belmont, CA: Duxbury.
Odum, E. P. 1950. Bird populations of the Highlands (North Carolina) plateau in relation to plant succession and avian invasion. Ecology 31: 587-605. https://doi.org/10.2307/1931577.

Also see

[MV] cluster programming subroutines - Add cluster-analysis routines
[MV] cluster programming utilities - Cluster-analysis programming utilities
[MV] cluster - Introduction to cluster-analysis commands

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Organization of the United Nations. StataNow and NetCourseNow are trademarks of StataCorp LLC. Other brand and product names are registered trademarks or trademarks of their respective companies. Copyright (c) 1985-2023 StataCorp LLC, College Station, TX,
 USA. All rights reserved.

For suggested citations, see the FAQ on citing Stata documentation.

