
Title stata.com

mepoisson — Multilevel mixed-effects Poisson regression

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

mepoisson fits mixed-effects models for count responses. The conditional distribution of the
response given the random effects is assumed to be Poisson.

Quick start
Without weights

Two-level Poisson regression of y on x with random intercepts by lev2

mepoisson y x || lev2:

Add evar measuring exposure
mepoisson y x, exposure(evar) || lev2:

Same as above, but report incidence-rate ratios
mepoisson y x, exposure(evar) || lev2:, irr

Add indicators for levels of categorical variable a and random coefficients on x

mepoisson y x i.a || lev2: x, irr

Three-level random-intercept model of y on x with lev2 nested within lev3

mepoisson y x || lev3: || lev2:

With weights

Two-level Poisson regression of y on x with random intercepts by lev2 and observation-level frequency
weights wvar1

mepoisson y x [fweight=wvar1] || lev2:

Two-level random-intercept model from a two-stage sampling design with PSUs identified by psu
using PSU-level and observation-level sampling weights wvar2 and wvar1, respectively

mepoisson y x [pweight=wvar1] || psu:, pweight(wvar2)

Add secondary sampling stage with units identified by ssu having weights wvar2 and PSU-level
weights wvar3 for a three-level random-intercept model

mepoisson y x [pw=wvar1] || psu:, pw(wvar3) || ssu:, pw(wvar2)

Same as above, but svyset data first
svyset psu, weight(wvar3) || ssu, weight(wvar2) || _n, weight(wvar1)
svy: mepoisson y x || psu: || ssu:
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http://stata.com
https://www.stata.com/manuals/u11.pdf#u11.4.3Factorvariables
https://www.stata.com/manuals/svysvyset.pdf#svysvyset
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Menu
Statistics > Multilevel mixed-effects models > Poisson regression

Syntax
mepoisson depvar fe equation

[
|| re equation

] [
|| re equation . . .

] [
, options

]
where the syntax of fe equation is[

indepvars
] [

if
] [

in
] [

weight
] [

, fe options
]

and the syntax of re equation is one of the following:

for random coefficients and intercepts

levelvar:
[

varlist
] [

, re options
]

for random effects among the values of a factor variable in a crossed-effects model

levelvar: R.varname

levelvar is a variable identifying the group structure for the random effects at that level or is all
representing one group comprising all observations.

fe options Description

Model

noconstant suppress the constant term from the fixed-effects equation
exposure(varnamee) include ln(varnamee) in model with coefficient constrained to 1
offset(varnameo) include varnameo in model with coefficient constrained to 1

re options Description

Model

covariance(vartype) variance–covariance structure of the random effects
noconstant suppress constant term from the random-effects equation
fweight(varname) frequency weights at higher levels
iweight(varname) importance weights at higher levels
pweight(varname) sampling weights at higher levels

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
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options Description

Model

constraints(constraints) apply specified linear constraints

SE/Robust

vce(vcetype) vcetype may be oim, opg, robust, or cluster clustvar

Reporting

level(#) set confidence level; default is level(95)

irr report fixed-effects coefficients as incidence-rate ratios
nocnsreport do not display constraints
notable suppress coefficient table
noheader suppress output header
nogroup suppress table summarizing groups
display options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

Integration

intmethod(intmethod) integration method
intpoints(#) set the number of integration (quadrature) points for all levels;

default is intpoints(7)

Maximization

maximize options control the maximization process; seldom used

startvalues(svmethod) method for obtaining starting values
startgrid

[
(gridspec)

]
perform a grid search to improve starting values

noestimate do not fit the model; show starting values instead
dnumerical use numerical derivative techniques
collinear keep collinear variables
coeflegend display legend instead of statistics

vartype Description

independent one unique variance parameter per random effect and all covariances
0; the default unless the R. notation is used

exchangeable equal variances for random effects and one common pairwise
covariance

identity equal variances for random effects and all covariances 0; the
default if the R. notation is used

unstructured all variances and covariances to be distinctly estimated
fixed(matname) user-selected variances and covariances constrained to specified

values; the remaining variances and covariances unrestricted
pattern(matname) user-selected variances and covariances constrained to be equal;

the remaining variances and covariances unrestricted

https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptionsOptionsconstraintsdescrip
https://www.stata.com/manuals/r.pdf#rvce_option
https://www.stata.com/manuals/memeglm.pdf#memeglmOptionsstartvalues()
https://www.stata.com/manuals/memeglm.pdf#memeglmOptionsstartgrid()
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intmethod Description

mvaghermite mean–variance adaptive Gauss–Hermite quadrature; the default
unless a crossed random-effects model is fit

mcaghermite mode-curvature adaptive Gauss–Hermite quadrature
pcaghermite Pinheiro–Chao mode-curvature adaptive Gauss–Hermite

quadrature
ghermite nonadaptive Gauss–Hermite quadrature
laplace Laplacian approximation; the default for crossed random-effects

models
pclaplace Pinheiro–Chao Laplacian approximation

indepvars and varlist may contain factor variables; see [U] 11.4.3 Factor variables.
depvar, indepvars, and varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.
bayes, by, collect, and svy are allowed; see [U] 11.1.10 Prefix commands. For more details, see

[BAYES] bayes: mepoisson.
vce() and weights are not allowed with the svy prefix; see [SVY] svy.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight. Only one type of weight may be specified.

Weights are not supported under the Laplacian approximation or for crossed models.
startvalues(), startgrid, noestimate, dnumerical, collinear, and coeflegend do not appear in the dialog

box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

noconstant suppresses the constant (intercept) term and may be specified for the fixed-effects
equation and for any of or all the random-effects equations.

exposure(varnamee) specifies a variable that reflects the amount of exposure over which the depvar
events were observed for each observation; ln(varnamee) is included in the fixed-effects portion
of the model with the coefficient constrained to be 1.

offset(varnameo) specifies that varnameo be included in the fixed-effects portion of the model with
the coefficient constrained to be 1.

covariance(vartype) specifies the structure of the covariance matrix for the random effects and
may be specified for each random-effects equation. vartype is one of the following: independent,
exchangeable, identity, unstructured, fixed(matname), or pattern(matname).

covariance(independent) covariance structure allows for a distinct variance for each random
effect within a random-effects equation and assumes that all covariances are 0. The default is
covariance(independent) unless a crossed random-effects model is fit, in which case the
default is covariance(identity).

covariance(exchangeable) structure specifies one common variance for all random effects and
one common pairwise covariance.

covariance(identity) is short for “multiple of the identity”; that is, all variances are equal
and all covariances are 0.

covariance(unstructured) allows for all variances and covariances to be distinct. If an equation
consists of p random-effects terms, the unstructured covariance matrix will have p(p + 1)/2
unique parameters.

https://www.stata.com/manuals/u11.pdf#u11.4.3Factorvariables
https://www.stata.com/manuals/u11.pdf#u11.4.4Time-seriesvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/bayesbayesmepoisson.pdf#bayesbayesmepoisson
https://www.stata.com/manuals/svysvy.pdf#svysvy
https://www.stata.com/manuals/u11.pdf#u11.1.6weight
https://www.stata.com/manuals/u20.pdf#u20Estimationandpostestimationcommands
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
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covariance(fixed(matname)) and covariance(pattern(matname)) covariance structures
provide a convenient way to impose constraints on variances and covariances of random effects.
Each specification requires a matname that defines the restrictions placed on variances and
covariances. Only elements in the lower triangle of matname are used, and row and column names
of matname are ignored. A missing value in matname means that a given element is unrestricted.
In a fixed(matname) covariance structure, (co)variance (i, j) is constrained to equal the
value specified in the i, jth entry of matname. In a pattern(matname) covariance structure,
(co)variances (i, j) and (k, l) are constrained to be equal if matname[i, j] = matname[k, l].

fweight(varname) specifies frequency weights at higher levels in a multilevel model, whereas
frequency weights at the first level (the observation level) are specified in the usual manner, for
example, [fw=fwtvar1]. varname can be any valid Stata variable name, and you can specify
fweight() at levels two and higher of a multilevel model. For example, in the two-level model

. mecmd fixed_portion [fw = wt1] || school: . . . , fweight(wt2) . . .

the variable wt1 would hold the first-level (the observation-level) frequency weights, and wt2
would hold the second-level (the school-level) frequency weights.

iweight(varname) specifies importance weights at higher levels in a multilevel model, whereas
importance weights at the first level (the observation level) are specified in the usual manner,
for example, [iw=iwtvar1]. varname can be any valid Stata variable name, and you can specify
iweight() at levels two and higher of a multilevel model. For example, in the two-level model

. mecmd fixed_portion [iw = wt1] || school: . . . , iweight(wt2) . . .

the variable wt1 would hold the first-level (the observation-level) importance weights, and wt2
would hold the second-level (the school-level) importance weights.

pweight(varname) specifies sampling weights at higher levels in a multilevel model, whereas
sampling weights at the first level (the observation level) are specified in the usual manner, for
example, [pw=pwtvar1]. varname can be any valid Stata variable name, and you can specify
pweight() at levels two and higher of a multilevel model. For example, in the two-level model

. mecmd fixed_portion [pw = wt1] || school: . . . , pweight(wt2) . . .

variable wt1 would hold the first-level (the observation-level) sampling weights, and wt2 would
hold the second-level (the school-level) sampling weights.

constraints(constraints); see [R] Estimation options.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (oim, opg), that are robust to some kinds of misspecification (robust), and
that allow for intragroup correlation (cluster clustvar); see [R] vce option. If vce(robust) is
specified, robust variances are clustered at the highest level in the multilevel model.

� � �
Reporting �

level(#); see [R] Estimation options.

irr reports estimated fixed-effects coefficients transformed to incidence-rate ratios, that is, exp(β)
rather than β. Standard errors and confidence intervals are similarly transformed. This option
affects how results are displayed, not how they are estimated or stored. irr may be specified
either at estimation or upon replay.

nocnsreport; see [R] Estimation options.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/rvce_option.pdf#rvce_option
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
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notable suppresses the estimation table, either at estimation or upon replay.

noheader suppresses the output header, either at estimation or upon replay.

nogroup suppresses the display of group summary information (number of groups, average group
size, minimum, and maximum) from the output header.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Integration �

intmethod(intmethod) specifies the integration method to be used for the random-effects model.
mvaghermite performs mean–variance adaptive Gauss–Hermite quadrature; mcaghermite and
pcaghermite perform mode-curvature adaptive Gauss–Hermite quadrature; ghermite performs
nonadaptive Gauss–Hermite quadrature; and laplace and pclaplace perform the Laplacian
approximation, equivalent to mode-curvature adaptive Gaussian quadrature with one integration
point. Techniques pcaghermite and pclaplace obtain the random-effects mode and curvature
using the efficient hierarchical decomposition algorithm described in Pinheiro and Chao (2006). For
hierarchical models, this algorithm takes advantage of the design structure to minimize memory use
and utilizes a series of orthogonal triangulations to compute the factored random-effects Hessian
indirectly, avoiding the sparse full Hessian. Techniques mcaghermite and laplace use Cholesky
factorization on the full Hessian. For four- and higher-level hierarchical designs, there can be
dramatic computation-time differences.

The default integration method is mvaghermite unless a crossed random-effects model is fit, in
which case the default integration method is laplace. The Laplacian approximation has been
known to produce biased parameter estimates; however, the bias tends to be more prominent in
the estimates of the variance components rather than in the estimates of the fixed effects.

For crossed random-effects models, estimation with more than one quadrature point may be
prohibitively intensive even for a small number of levels. For this reason, the integration method
defaults to the Laplacian approximation. You may override this behavior by specifying a different
integration method.

intpoints(#) sets the number of integration points for quadrature. The default is intpoints(7),
which means that seven quadrature points are used for each level of random effects. This option
is not allowed with intmethod(laplace).

The more integration points, the more accurate the approximation to the log likelihood. However,
computation time increases as a function of the number of quadrature points raised to a power
equaling the dimension of the random-effects specification. In crossed random-effects models and
in models with many levels or many random coefficients, this increase can be substantial.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] Maximize. Those that require
special mention for mepoisson are listed below.

from() accepts a properly labeled vector of initial values or a list of coefficient names with values.
A list of values is not allowed.

https://www.stata.com/manuals/d.pdf#dformat
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/rmaximize.pdf#rMaximizeSyntaxalgorithm_spec
https://www.stata.com/manuals/rmaximize.pdf#rMaximize
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The following options are available with mepoisson but are not shown in the dialog box:

startvalues(svmethod), startgrid
[
(gridspec)

]
, noestimate, and dnumerical; see [ME]

meglm.

collinear, coeflegend; see [R] Estimation options.

Remarks and examples stata.com

For a general introduction to me commands, see [ME] me.

Remarks are presented under the following headings:

Introduction
Two-level models
Higher-level models

Introduction

Mixed-effects Poisson regression is Poisson regression containing both fixed effects and random
effects. In longitudinal data and panel data, random effects are useful for modeling intracluster
correlation; that is, observations in the same cluster are correlated because they share common
cluster-level random effects.

mepoisson allows for many levels of random effects. However, for simplicity, for now we consider
the two-level model, where for a series of M independent clusters, and conditional on a set of random
effects uj ,

Pr(yij = y|xij ,uj) = exp (−µij)µyij/y! (1)

for µij = exp(xijβ + zijuj), j = 1, . . . ,M clusters, with cluster j consisting of i = 1, . . . , nj
observations. The responses are counts yij . The 1× p row vector xij are the covariates for the fixed
effects, analogous to the covariates you would find in a standard Poisson regression model, with
regression coefficients (fixed effects) β. For notational convenience here and throughout this manual
entry, we suppress the dependence of yij on xij .

The 1 × q vector zij are the covariates corresponding to the random effects and can be used to
represent both random intercepts and random coefficients. For example, in a random-intercept model,
zij is simply the scalar 1. The random effects uj are M realizations from a multivariate normal
distribution with mean 0 and q× q variance matrix Σ. The random effects are not directly estimated
as model parameters but are instead summarized according to the unique elements of Σ, known
as variance components. One special case of (1) places zij = xij so that all covariate effects are
essentially random and distributed as multivariate normal with mean β and variance Σ.

As noted in section 13.7 of Rabe-Hesketh and Skrondal (2022), the inclusion of a random intercept
causes the marginal variance of yij to be greater than the marginal mean, provided the variance of
the random intercept is not 0. Thus the random intercept in a mixed-effects Poisson model produces
overdispersion, a measure of variability above and beyond that allowed by a Poisson process; see
[R] nbreg and [ME] menbreg.

Below we present examples of mixed-effects Poisson regression; refer to [ME] me and [ME] meglm
for additional examples including crossed random-effects models. A two-level Poisson model can also
be fit using xtpoisson with the re option; see [XT] xtpoisson. In the absence of random effects,
mixed-effects Poisson regression reduces to standard Poisson regression; see [R] poisson.

https://www.stata.com/manuals/memeglm.pdf#memeglmOptionsstartval
https://www.stata.com/manuals/memeglm.pdf#memeglmOptionsstartval
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
http://stata.com
https://www.stata.com/manuals/meme.pdf#meme
https://www.stata.com/manuals/rnbreg.pdf#rnbreg
https://www.stata.com/manuals/memenbreg.pdf#memenbreg
https://www.stata.com/manuals/meme.pdf#meme
https://www.stata.com/manuals/memeglm.pdf#memeglm
https://www.stata.com/manuals/xtxtpoisson.pdf#xtxtpoisson
https://www.stata.com/manuals/rpoisson.pdf#rpoisson
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Two-level models

Example 1: Two-level random-intercept model

Breslow and Clayton (1993) fit a mixed-effects Poisson model to data from a randomized trial of
the drug progabide for the treatment of epilepsy.

. use https://www.stata-press.com/data/r18/epilepsy
(Epilepsy data; progabide drug treatment)

. describe

Contains data from https://www.stata-press.com/data/r18/epilepsy.dta
Observations: 236 Epilepsy data; progabide drug

treatment
Variables: 8 31 May 2022 14:09

(_dta has notes)

Variable Storage Display Value
name type format label Variable label

subject byte %9.0g Subject ID: 1-59
seizures int %9.0g No. of seizures
treat byte %9.0g treat Treatment
visit float %9.0g Doctor’s visit
lage float %9.0g log(age), mean-centered
lbas float %9.0g log(0.25*baseline seizures),

mean-centered
lbas_trt float %9.0g lbas/treat interaction
v4 byte %8.0g Fourth visit indicator

Sorted by: subject

Originally from Thall and Vail (1990), data were collected on 59 subjects (31 on progabide, 28 on
placebo). The number of epileptic seizures (seizures) was recorded during the two weeks prior to
each of four doctor visits (visit). The treatment group is identified by the indicator variable treat.
Data were also collected on the logarithm of age (lage) and the logarithm of one-quarter the number
of seizures during the eight weeks prior to the study (lbas). The variable lbas trt represents the
interaction between lbas and treatment. lage, lbas, and lbas trt are mean centered. Because the
study originally noted a substantial decrease in seizures prior to the fourth doctor visit, an indicator,
v4, for the fourth visit was also recorded.

Breslow and Clayton (1993) fit a random-effects Poisson model for the number of observed seizures

log(µij) = β0 + β1treatij + β2lbasij + β3lbas trtij + β4lageij + β5v4ij + uj

for j = 1, . . . , 59 subjects and i = 1, . . . , 4 visits. The random effects uj are assumed to be normally
distributed with mean 0 and variance σ2

u.
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. mepoisson seizures treat lbas lbas_trt lage v4 || subject:

Fitting fixed-effects model:

Iteration 0: Log likelihood = -1016.4106
Iteration 1: Log likelihood = -819.20112
Iteration 2: Log likelihood = -817.66006
Iteration 3: Log likelihood = -817.65925
Iteration 4: Log likelihood = -817.65925

Refining starting values:

Grid node 0: Log likelihood = -680.40523

Refining starting values (unscaled likelihoods):

Grid node 0: Log likelihood = -680.40523

Fitting full model:

Iteration 0: Log likelihood = -680.40523 (not concave)
Iteration 1: Log likelihood = -672.95766 (not concave)
Iteration 2: Log likelihood = -667.14039
Iteration 3: Log likelihood = -665.51823
Iteration 4: Log likelihood = -665.29165
Iteration 5: Log likelihood = -665.29067
Iteration 6: Log likelihood = -665.29067

Mixed-effects Poisson regression Number of obs = 236
Group variable: subject Number of groups = 59

Obs per group:
min = 4
avg = 4.0
max = 4

Integration method: mvaghermite Integration pts. = 7

Wald chi2(5) = 121.70
Log likelihood = -665.29067 Prob > chi2 = 0.0000

seizures Coefficient Std. err. z P>|z| [95% conf. interval]

treat -.9330306 .4007512 -2.33 0.020 -1.718489 -.1475727
lbas .8844225 .1312033 6.74 0.000 .6272689 1.141576

lbas_trt .3382561 .2033021 1.66 0.096 -.0602087 .736721
lage .4842226 .3471905 1.39 0.163 -.1962582 1.164703

v4 -.1610871 .0545758 -2.95 0.003 -.2680536 -.0541206
_cons 2.154578 .2199928 9.79 0.000 1.7234 2.585756

subject
var(_cons) .2528664 .0589844 .1600801 .399434

LR test vs. Poisson model: chibar2(01) = 304.74 Prob >= chibar2 = 0.0000

The number of seizures before the fourth visit does exhibit a significant drop, and the patients on
progabide demonstrate a decrease in frequency of seizures compared with the placebo group. The
subject-specific random effects also appear significant: σ̂2

u = 0.25 with standard error 0.06.

Because this is a simple random-intercept model, you can obtain equivalent results by using
xtpoisson with the re and normal options.

Example 2: Two-level random-slope model

In their study of PQL, Breslow and Clayton (1993) also fit a model where they dropped the fixed
effect on v4 and replaced it with a random subject-specific linear trend over the four doctor visits.
The model they fit is
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log(µij) = β0 + β1treatij + β2lbasij+β3lbas trtij+

β4lageij + β5visitij + uj + vjvisitij

where (uj , vj) are bivariate normal with 0 mean and variance–covariance matrix

Σ = Var
[
uj
vj

]
=

[
σ2
u σuv

σuv σ2
v

]
. mepoisson seizures treat lbas lbas_trt lage visit || subject: visit,
> covariance(unstructured) intpoints(9) nolog

Mixed-effects Poisson regression Number of obs = 236
Group variable: subject Number of groups = 59

Obs per group:
min = 4
avg = 4.0
max = 4

Integration method: mvaghermite Integration pts. = 9

Wald chi2(5) = 115.56
Log likelihood = -655.68103 Prob > chi2 = 0.0000

seizures Coefficient Std. err. z P>|z| [95% conf. interval]

treat -.9286592 .4021715 -2.31 0.021 -1.716901 -.1404175
lbas .8849762 .1312535 6.74 0.000 .627724 1.142228

lbas_trt .3379759 .2044471 1.65 0.098 -.062733 .7386849
lage .4767192 .3536276 1.35 0.178 -.2163781 1.169817

visit -.2664098 .1647098 -1.62 0.106 -.5892352 .0564156
_cons 2.099555 .2203749 9.53 0.000 1.667629 2.531482

subject
var(visit) .5314803 .229385 .2280928 1.238405
var(_cons) .2514923 .0587902 .1590534 .3976549

subject
cov(visit,

_cons) .0028715 .0887037 0.03 0.974 -.1709846 .1767276

LR test vs. Poisson model: chi2(3) = 324.54 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

In the above, we specified the covariance(unstructured) option to allow correlation between
uj and vj , although on the basis of the above output it probably was not necessary—the default
independent structure would have sufficed. In the interest of getting more accurate estimates, we
also increased the number of quadrature points to nine, although the estimates do not change much
when compared with estimates based on the default seven quadrature points.

The essence of the above-fitted model is that after adjusting for other covariates, the log trend in
seizures is modeled as a random subject-specific line, with intercept distributed as N(β0, σ

2
u) and

slope distributed as N(β5, σ
2
v). From the above output, β̂0 = 2.10, σ̂2

u = 0.25, β̂5 = −0.27, and
σ̂2
v = 0.53.

You can predict the random effects uj and vj by using predict after mepoisson; see [ME] mepois-
son postestimation. Better still, you can obtain a predicted number of seizures that takes these random
effects into account.

https://www.stata.com/manuals/memepoissonpostestimation.pdf#memepoissonpostestimation
https://www.stata.com/manuals/memepoissonpostestimation.pdf#memepoissonpostestimation
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Higher-level models

Example 3: Three- and four-level random-intercept model

Rabe-Hesketh and Skrondal (2022, exercise 13.7) describe data from the Atlas of Cancer Mortality
in the European Economic Community (EEC) (Smans, Mair, and Boyle 1993). The data were analyzed
in Langford, Bentham, and McDonald (1998) and record the number of deaths among males due to
malignant melanoma during 1971–1980.

. use https://www.stata-press.com/data/r18/melanoma
(Skin cancer (melanoma) data)

. describe

Contains data from https://www.stata-press.com/data/r18/melanoma.dta
Observations: 354 Skin cancer (melanoma) data

Variables: 6 30 May 2022 17:10
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

nation byte %11.0g n Nation ID
region byte %9.0g Region ID: EEC level-I areas
county int %9.0g County ID: EEC level-II/level-III

areas
deaths int %9.0g No. deaths during 1971-1980
expected float %9.0g No. expected deaths
uv float %9.0g UV dose, mean-centered

Sorted by:

Nine European nations (variable nation) are represented, and data were collected over geographical
regions defined by EEC statistical services as level I areas (variable region), with deaths being
recorded for each of 354 counties, which are level II or level III EEC-defined areas (variable county,
which identifies the observations). Counties are nested within regions, and regions are nested within
nations.

The variable deaths records the number of deaths for each county, and expected records the
expected number of deaths (the exposure) on the basis of crude rates for the combined countries.
Finally, the variable uv is a measure of exposure to ultraviolet (UV) radiation.

In modeling the number of deaths, one possibility is to include dummy variables for the nine nations
as fixed effects. Another is to treat these as random effects and fit the three-level random-intercept
Poisson model,

log(µijk) = log(expectedijk) + β0 + β1uvijk + uk + vjk

for nation k, region j, and county i. The model includes an exposure term for expected deaths.
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. mepoisson deaths uv, exposure(expected) || nation: || region:

Fitting fixed-effects model:

Iteration 0: Log likelihood = -2136.5847
Iteration 1: Log likelihood = -1723.8955
Iteration 2: Log likelihood = -1723.7727
Iteration 3: Log likelihood = -1723.7727

Refining starting values:

Grid node 0: Log likelihood = -1166.6536

Refining starting values (unscaled likelihoods):

Grid node 0: Log likelihood = -1166.6536

Fitting full model:

Iteration 0: Log likelihood = -1166.6536 (not concave)
Iteration 1: Log likelihood = -1152.2741 (not concave)
Iteration 2: Log likelihood = -1146.3094 (not concave)
Iteration 3: Log likelihood = -1119.8479 (not concave)
Iteration 4: Log likelihood = -1108.0129 (not concave)
Iteration 5: Log likelihood = -1098.8067
Iteration 6: Log likelihood = -1095.7563
Iteration 7: Log likelihood = -1095.3164
Iteration 8: Log likelihood = -1095.31
Iteration 9: Log likelihood = -1095.31

Mixed-effects Poisson regression Number of obs = 354

Grouping information

No. of Observations per group
Group variable groups Minimum Average Maximum

nation 9 3 39.3 95
region 78 1 4.5 13

Integration method: mvaghermite Integration pts. = 7

Wald chi2(1) = 6.12
Log likelihood = -1095.31 Prob > chi2 = 0.0134

deaths Coefficient Std. err. z P>|z| [95% conf. interval]

uv -.0282041 .0113998 -2.47 0.013 -.0505473 -.0058608
_cons -.0639672 .1335515 -0.48 0.632 -.3257234 .197789

ln(expected) 1 (exposure)

nation
var(_cons) .1371732 .0723303 .048802 .3855676

nation>
region

var(_cons) .0483483 .0109079 .0310699 .0752353

LR test vs. Poisson model: chi2(2) = 1256.93 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

By including an exposure variable that is an expected rate, we are in effect specifying a linear model
for the log of the standardized mortality ratio, the ratio of observed deaths to expected deaths that is
based on a reference population. Here the reference population is all nine nations.

Looking at the estimated variance components, we can see there is more unobserved variability
between nations than between regions within each nation. This may be due to, for example, country-
specific informational campaigns on the risks of sun exposure.
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We now add a random intercept for counties nested within regions, making this a four-level
model. Because counties also identify the observations, the corresponding variance component can be
interpreted as a measure of overdispersion, variability above and beyond that allowed by a Poisson
process; see [R] nbreg and [ME] menbreg.

. mepoisson deaths uv, exposure(expected) || nation: || region: || county:,
> intmethod(mcaghermite)

Fitting fixed-effects model:

Iteration 0: Log likelihood = -2136.5847
Iteration 1: Log likelihood = -1723.8955
Iteration 2: Log likelihood = -1723.7727
Iteration 3: Log likelihood = -1723.7727

Refining starting values:

Grid node 0: Log likelihood = -1379.3466

Refining starting values (unscaled likelihoods):

Grid node 0: Log likelihood = -1379.3466

Fitting full model:

Iteration 0: Log likelihood = -1379.3466 (not concave)
Iteration 1: Log likelihood = -1310.4947 (not concave)
Iteration 2: Log likelihood = -1245.534 (not concave)
Iteration 3: Log likelihood = -1218.5474 (not concave)
Iteration 4: Log likelihood = -1207.881 (not concave)
Iteration 5: Log likelihood = -1122.0585 (not concave)
Iteration 6: Log likelihood = -1092.4049
Iteration 7: Log likelihood = -1088.0486
Iteration 8: Log likelihood = -1086.7175
Iteration 9: Log likelihood = -1086.6756
Iteration 10: Log likelihood = -1086.6754
Iteration 11: Log likelihood = -1086.6754

Mixed-effects Poisson regression Number of obs = 354

Grouping information

No. of Observations per group
Group variable groups Minimum Average Maximum

nation 9 3 39.3 95
region 78 1 4.5 13
county 354 1 1.0 1

https://www.stata.com/manuals/rnbreg.pdf#rnbreg
https://www.stata.com/manuals/memenbreg.pdf#memenbreg
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Integration method: mcaghermite Integration pts. = 7

Wald chi2(1) = 8.62
Log likelihood = -1086.6754 Prob > chi2 = 0.0033

deaths Coefficient Std. err. z P>|z| [95% conf. interval]

uv -.0334702 .0113968 -2.94 0.003 -.0558075 -.0111329
_cons -.0864583 .1299275 -0.67 0.506 -.3411115 .168195

ln(expected) 1 (exposure)

nation
var(_cons) .1288627 .0681643 .0456949 .3634011

nation>
region

var(_cons) .0406279 .0105154 .0244633 .0674735

nation>
region>
county

var(_cons) .0146672 .0050979 .0074215 .0289867

LR test vs. Poisson model: chi2(3) = 1274.19 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

In the above, we used intmethod(mcaghermite), which is not only faster but also produces
estimates that closely agree with those obtained with the default mvaghermite integration method.

Stored results
mepoisson stores the following in e():

Scalars
e(N) number of observations
e(k) number of parameters
e(k dv) number of dependent variables
e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test
e(k f) number of fixed-effects parameters
e(k r) number of random-effects parameters
e(k rs) number of variances
e(k rc) number of covariances
e(df m) model degrees of freedom
e(ll) log likelihood
e(N clust) number of clusters
e(chi2) χ2

e(p) p-value for model test
e(ll c) log likelihood, comparison model
e(chi2 c) χ2, comparison test
e(df c) degrees of freedom, comparison test
e(p c) p-value for comparison test
e(rank) rank of e(V)
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) meglm
e(cmd2) mepoisson
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e(cmdline) command as typed
e(depvar) name of dependent variable
e(wtype) weight type
e(wexp) weight expression (first-level weights)
e(fweightk) fweight variable for kth highest level, if specified
e(iweightk) iweight variable for kth highest level, if specified
e(pweightk) pweight variable for kth highest level, if specified
e(covariates) list of covariates
e(ivars) grouping variables
e(model) poisson
e(title) title in estimation output
e(link) log
e(family) poisson
e(clustvar) name of cluster variable
e(offset) offset
e(intmethod) integration method
e(n quad) number of integration points
e(chi2type) Wald; type of model χ2

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.
e(opt) type of optimization
e(which) max or min; whether optimizer is to perform maximization or minimization
e(ml method) type of ml method
e(user) name of likelihood-evaluator program
e(technique) maximization technique
e(datasignature) the checksum
e(datasignaturevars) variables used in calculation of checksum
e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
e(marginswtype) weight type for margins
e(marginswexp) weight expression for margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector
e(N g) group counts
e(g min) group-size minimums
e(g avg) group-size averages
e(g max) group-size maximums
e(V) variance–covariance matrix of the estimators
e(V modelbased) model-based variance

Functions
e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices
r(table) matrix containing the coefficients with their standard errors, test statistics, p-values,

and confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when
any r-class command is run after the estimation command.
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Methods and formulas
mepoisson is a convenience command for meglm with a log link and an poisson family; see

[ME] meglm.

In a two-level Poisson model, for cluster j, j = 1, . . . ,M , the conditional distribution of
yj = (yj1, . . . , yjnj )

′, given a set of cluster-level random effects uj , is

f(yj |uj) =
nj∏
i=1

[{ exp (xijβ+ zijuj)}yij exp {− exp (xijβ+ zijuj)} /yij !]

= exp

[
nj∑
i=1

{yij (xijβ+ zijuj)− exp (xijβ+ zijuj)− log(yij !)}

]

Defining c (yj) =
∑nj

i=1 log(yij !), where c(yj) does not depend on the model parameters, we
can express the above compactly in matrix notation,

f(yj |uj) = exp
{
y′j (Xjβ+ Zjuj)− 1′ exp (Xjβ+ Zjuj)− c (yj)

}
where Xj is formed by stacking the row vectors xij and Zj is formed by stacking the row vectors
zij . We extend the definition of exp(·) to be a vector function where necessary.

Because the prior distribution of uj is multivariate normal with mean 0 and q× q variance matrix
Σ, the likelihood contribution for the jth cluster is obtained by integrating uj out of the joint density
f(yj ,uj),

Lj(β,Σ) = (2π)−q/2 |Σ|−1/2
∫
f(yj |uj) exp

(
−u′jΣ−1uj/2

)
duj

= exp {−c (yj)} (2π)−q/2 |Σ|−1/2
∫

exp {h (β,Σ,uj)} duj
(2)

where
h (β,Σ,uj) = y′j (Xjβ+ Zjuj)− 1′ exp (Xjβ+ Zjuj)− u′jΣ

−1uj/2

and for convenience, in the arguments of h(·) we suppress the dependence on the observable data
(yj ,Xj ,Zj).

The integration in (2) has no closed form and thus must be approximated; see Methods and
formulas in [ME] meglm for details.

mepoisson supports multilevel weights and survey data; see Methods and formulas in [ME] meglm
for details.
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