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Description

menbreg fits mixed-effects negative binomial models to count data. The conditional distribution
of the response given random effects is assumed to follow a Poisson-like process, except that the
variation is greater than that of a true Poisson process.

Quick start
Mixed-effects negative binomial regression of y on x with random intercepts by v1

menbreg y x || v1:

Add evar measuring exposure
menbreg y x, exposure(evar) || v1:

Same as above, but report incidence-rate ratios instead of coefficients
menbreg y x, exposure(evar) || v1:, irr

Add random coefficients for x
menbreg y x, exposure(evar) || v1: x, irr

Three-level random-intercept model of y on x with v1 nested within v2

menbreg y x || v2: || v1:

Menu
Statistics > Multilevel mixed-effects models > Negative binomial regression
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Syntax
menbreg depvar fe equation

[
|| re equation

] [
|| re equation . . .

] [
, options

]
where the syntax of fe equation is[

indepvars
] [

if
] [

in
] [

weight
] [

, fe options
]

and the syntax of re equation is one of the following:

for random coefficients and intercepts

levelvar:
[

varlist
] [

, re options
]

for random effects among the values of a factor variable in a crossed-effects model

levelvar: R.varname

levelvar is a variable identifying the group structure for the random effects at that level or is all
representing one group comprising all observations.

fe options Description

Model

noconstant suppress the constant term from the fixed-effects equation
exposure(varnamee) include ln(varnamee) in model with coefficient constrained to 1
offset(varnameo) include varnameo in model with coefficient constrained to 1

re options Description

Model

covariance(vartype) variance–covariance structure of the random effects
noconstant suppress constant term from the random-effects equation
fweight(varname) frequency weights at higher levels
iweight(varname) importance weights at higher levels
pweight(varname) sampling weights at higher levels

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
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options Description

Model

dispersion(dispersion) parameterization of the conditional overdispersion;
dispersion may be mean (default) or constant

constraints(constraints) apply specified linear constraints

SE/Robust

vce(vcetype) vcetype may be oim, opg, robust, or cluster clustvar

Reporting

level(#) set confidence level; default is level(95)

irr report fixed-effects coefficients as incidence-rate ratios
nocnsreport do not display constraints
notable suppress coefficient table
noheader suppress output header
nogroup suppress table summarizing groups
display options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

Integration

intmethod(intmethod) integration method
intpoints(#) set the number of integration (quadrature) points for all levels;

default is intpoints(7)

Maximization

maximize options control the maximization process; seldom used

startvalues(svmethod) method for obtaining starting values
startgrid

[
(gridspec)

]
perform a grid search to improve starting values

noestimate do not fit the model; show starting values instead
dnumerical use numerical derivative techniques
collinear keep collinear variables
coeflegend display legend instead of statistics

vartype Description

independent one unique variance parameter per random effect and all covariances
0; the default unless the R. notation is used

exchangeable equal variances for random effects and one common pairwise
covariance

identity equal variances for random effects and all covariances 0; the
default if the R. notation is used

unstructured all variances and covariances to be distinctly estimated
fixed(matname) user-selected variances and covariances constrained to specified

values; the remaining variances and covariances unrestricted
pattern(matname) user-selected variances and covariances constrained to be equal;

the remaining variances and covariances unrestricted

https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptionsOptionsconstraintsdescrip
https://www.stata.com/manuals/r.pdf#rvce_option
https://www.stata.com/manuals/memeglm.pdf#memeglmOptionsstartvalues()
https://www.stata.com/manuals/memeglm.pdf#memeglmOptionsstartgrid()
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intmethod Description

mvaghermite mean–variance adaptive Gauss–Hermite quadrature; the default
unless a crossed random-effects model is fit

mcaghermite mode-curvature adaptive Gauss–Hermite quadrature
ghermite nonadaptive Gauss–Hermite quadrature
laplace Laplacian approximation; the default for crossed random-effects

models

indepvars and varlist may contain factor variables; see [U] 11.4.3 Factor variables.
depvar, indepvars, and varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.
bayes, by, collect, and svy are allowed; see [U] 11.1.10 Prefix commands. For more details, see [BAYES] bayes: men-

breg.
vce() and weights are not allowed with the svy prefix; see [SVY] svy.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight. Only one type of weight may be specified.

Weights are not supported under the Laplacian approximation or for crossed models.
startvalues(), startgrid, noestimate, dnumerical, collinear, and coeflegend do not appear in the dialog

box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

noconstant suppresses the constant (intercept) term and may be specified for the fixed-effects
equation and for any of or all the random-effects equations.

exposure(varnamee) specifies a variable that reflects the amount of exposure over which the depvar
events were observed for each observation; ln(varnamee) is included in the fixed-effects portion
of the model with the coefficient constrained to be 1.

offset(varnameo) specifies that varnameo be included in the fixed-effects portion of the model with
the coefficient constrained to be 1.

covariance(vartype) specifies the structure of the covariance matrix for the random effects and
may be specified for each random-effects equation. vartype is one of the following: independent,
exchangeable, identity, unstructured, fixed(matname), or pattern(matname).

covariance(independent) covariance structure allows for a distinct variance for each random
effect within a random-effects equation and assumes that all covariances are 0. The default is
covariance(independent) unless a crossed random-effects model is fit, in which case the
default is covariance(identity).

covariance(exchangeable) structure specifies one common variance for all random effects and
one common pairwise covariance.

covariance(identity) is short for “multiple of the identity”; that is, all variances are equal
and all covariances are 0.

covariance(unstructured) allows for all variances and covariances to be distinct. If an equation
consists of p random-effects terms, the unstructured covariance matrix will have p(p + 1)/2
unique parameters.

covariance(fixed(matname)) and covariance(pattern(matname)) covariance structures
provide a convenient way to impose constraints on variances and covariances of random effects.

https://www.stata.com/manuals/u11.pdf#u11.4.3Factorvariables
https://www.stata.com/manuals/u11.pdf#u11.4.4Time-seriesvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/bayesbayesmenbreg.pdf#bayesbayesmenbreg
https://www.stata.com/manuals/bayesbayesmenbreg.pdf#bayesbayesmenbreg
https://www.stata.com/manuals/svysvy.pdf#svysvy
https://www.stata.com/manuals/u11.pdf#u11.1.6weight
https://www.stata.com/manuals/u20.pdf#u20Estimationandpostestimationcommands
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
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Each specification requires a matname that defines the restrictions placed on variances and
covariances. Only elements in the lower triangle of matname are used, and row and column names
of matname are ignored. A missing value in matname means that a given element is unrestricted.
In a fixed(matname) covariance structure, (co)variance (i, j) is constrained to equal the
value specified in the i, jth entry of matname. In a pattern(matname) covariance structure,
(co)variances (i, j) and (k, l) are constrained to be equal if matname[i, j] = matname[k, l].

fweight(varname) specifies frequency weights at higher levels in a multilevel model, whereas
frequency weights at the first level (the observation level) are specified in the usual manner, for
example, [fw=fwtvar1]. varname can be any valid Stata variable name, and you can specify
fweight() at levels two and higher of a multilevel model. For example, in the two-level model

. mecmd fixed_portion [fw = wt1] || school: . . . , fweight(wt2) . . .

the variable wt1 would hold the first-level (the observation-level) frequency weights, and wt2
would hold the second-level (the school-level) frequency weights.

iweight(varname) specifies importance weights at higher levels in a multilevel model, whereas
importance weights at the first level (the observation level) are specified in the usual manner,
for example, [iw=iwtvar1]. varname can be any valid Stata variable name, and you can specify
iweight() at levels two and higher of a multilevel model. For example, in the two-level model

. mecmd fixed_portion [iw = wt1] || school: . . . , iweight(wt2) . . .

the variable wt1 would hold the first-level (the observation-level) importance weights, and wt2
would hold the second-level (the school-level) importance weights.

pweight(varname) specifies sampling weights at higher levels in a multilevel model, whereas
sampling weights at the first level (the observation level) are specified in the usual manner, for
example, [pw=pwtvar1]. varname can be any valid Stata variable name, and you can specify
pweight() at levels two and higher of a multilevel model. For example, in the two-level model

. mecmd fixed_portion [pw = wt1] || school: . . . , pweight(wt2) . . .

variable wt1 would hold the first-level (the observation-level) sampling weights, and wt2 would
hold the second-level (the school-level) sampling weights.

dispersion(mean | constant) specifies the parameterization of the conditional overdispersion given
random effects. dispersion(mean), the default, yields a model where the conditional overdis-
persion is a function of the conditional mean given random effects. For example, in a two-level
model, the conditional overdispersion is equal to 1+αE(yij |uj). dispersion(constant) yields
a model where the conditional overdispersion is constant and is equal to 1 + δ. α and δ are the
respective conditional overdispersion parameters.

constraints(constraints); see [R] Estimation options.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (oim, opg), that are robust to some kinds of misspecification (robust), and
that allow for intragroup correlation (cluster clustvar); see [R] vce option. If vce(robust) is
specified, robust variances are clustered at the highest level in the multilevel model.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/rvce_option.pdf#rvce_option
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� � �
Reporting �

level(#); see [R] Estimation options.

irr reports estimated fixed-effects coefficients transformed to incidence-rate ratios, that is, exp(β)
rather than β. Standard errors and confidence intervals are similarly transformed. This option
affects how results are displayed, not how they are estimated or stored. irr may be specified
either at estimation or upon replay.

nocnsreport; see [R] Estimation options.

notable suppresses the estimation table, either at estimation or upon replay.

noheader suppresses the output header, either at estimation or upon replay.

nogroup suppresses the display of group summary information (number of groups, average group
size, minimum, and maximum) from the output header.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Integration �

intmethod(intmethod) specifies the integration method to be used for the random-effects model.
mvaghermite performs mean–variance adaptive Gauss–Hermite quadrature; mcaghermite per-
forms mode-curvature adaptive Gauss–Hermite quadrature; ghermite performs nonadaptive Gauss–
Hermite quadrature; and laplace performs the Laplacian approximation, equivalent to mode-
curvature adaptive Gaussian quadrature with one integration point.

The default integration method is mvaghermite unless a crossed random-effects model is fit, in
which case the default integration method is laplace. The Laplacian approximation has been
known to produce biased parameter estimates; however, the bias tends to be more prominent in
the estimates of the variance components rather than in the estimates of the fixed effects.

For crossed random-effects models, estimation with more than one quadrature point may be
prohibitively intensive even for a small number of levels. For this reason, the integration method
defaults to the Laplacian approximation. You may override this behavior by specifying a different
integration method.

intpoints(#) sets the number of integration points for quadrature. The default is intpoints(7),
which means that seven quadrature points are used for each level of random effects. This option
is not allowed with intmethod(laplace).

The more integration points, the more accurate the approximation to the log likelihood. However,
computation time increases as a function of the number of quadrature points raised to a power
equaling the dimension of the random-effects specification. In crossed random-effects models and
in models with many levels or many random coefficients, this increase can be substantial.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] Maximize. Those that require
special mention for menbreg are listed below.

from() accepts a properly labeled vector of initial values or a list of coefficient names with values.
A list of values is not allowed.

https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/d.pdf#dformat
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/rmaximize.pdf#rMaximizeSyntaxalgorithm_spec
https://www.stata.com/manuals/rmaximize.pdf#rMaximize


menbreg — Multilevel mixed-effects negative binomial regression 7

The following options are available with menbreg but are not shown in the dialog box:

startvalues(svmethod), startgrid
[
(gridspec)

]
, noestimate, and dnumerical; see [ME]

meglm.

collinear, coeflegend; see [R] Estimation options.

Remarks and examples stata.com

Mixed-effects negative binomial regression is negative binomial regression containing both fixed
effects and random effects. In longitudinal data and panel data, random effects are useful for modeling
intracluster correlation; that is, observations in the same cluster are correlated because they share
common cluster-level random effects.

menbreg allows for many levels of random effects. However, for simplicity, consider a two-level
model, where for a series of M independent clusters, and conditional on the latent variable ζij and
a set of random effects uj ,

yij |ζij ∼ Poisson(ζij)

and
ζij |uj ∼ Gamma(rij , pij)

and
uj ∼ N(0,Σ)

where yij is the count response of the ith observation, i = 1, . . . , nj , from the jth cluster,
j = 1, . . . ,M , and rij and pij have two different parameterizations, (2) and (3) below. The random
effects uj are M realizations from a multivariate normal distribution with mean 0 and q × q
variance matrix Σ. The random effects are not directly estimated as model parameters but are instead
summarized according to the unique elements of Σ, known as variance components.

The probability that a random response yij takes the value y is then given by

Pr(yij = y|uj) =
Γ(y + rij)

Γ(y + 1)Γ(rij)
p
rij
ij (1− pij)y (1)

where for convenience we suppress the dependence of the observable data yij on rij and pij .

Model (1) is an extension of the standard negative binomial model (see [R] nbreg) to incorporate
normally distributed random effects at different hierarchical levels. (The negative binomial model
itself can be viewed as a random-effects model, a Poisson model with a gamma-distributed random
effect.) The standard negative binomial model is used to model overdispersed count data for which the
variance is greater than that of a Poisson model. In a Poisson model, the variance is equal to the mean,
and thus overdispersion is defined as the extra variability compared with the mean. According to this
definition, the negative binomial model presents two different parameterizations of the overdispersion:
the mean parameterization, where the overdispersion is a function of the mean, 1 +αE(Y |x), α > 0;
and the constant parameterization, where the overdispersion is a constant function, 1 + δ, δ ≥ 0. We
refer to α and δ as conditional overdispersion parameters.

Let µij = E(yij |x,uj) = exp(xijβ+zijuj), where xij is the 1×p row vector of the fixed-effects
covariates, analogous to the covariates you would find in a standard negative binomial regression
model, with regression coefficients (fixed effects) β; zij is the 1 × q vector of the random-effects

https://www.stata.com/manuals/memeglm.pdf#memeglmOptionsstartval
https://www.stata.com/manuals/memeglm.pdf#memeglmOptionsstartval
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
http://stata.com
https://www.stata.com/manuals/rnbreg.pdf#rnbreg
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covariates and can be used to represent both random intercepts and random coefficients. For example,
in a random-intercept model, zij is simply the scalar 1. One special case places zij = xij , so that
all covariate effects are essentially random and distributed as multivariate normal with mean β and
variance Σ.

Similarly to the standard negative binomial model, we can consider two parameterizations of
what we call the conditional overdispersion, the overdispersion conditional on random effects, in a
random-effects negative binomial model. For the mean-overdispersion (or, more technically, mean-
conditional-overdispersion) parameterization,

rij = 1/α and pij =
1

1 + αµij
(2)

and the conditional overdispersion is equal to 1 + αµij . For the constant-overdispersion (or, more
technically, constant-conditional-overdispersion) parameterization,

rij = µij/δ and pij =
1

1 + δ
(3)

and the conditional overdispersion is equal to 1 + δ. In what follows, for brevity, we will use the
term overdispersion parameter to mean conditional overdispersion parameter, unless stated otherwise.

In the context of random-effects negative binomial models, it is important to decide which model
is used as a reference model for the definition of the overdispersion. For example, if we consider
a corresponding random-effects Poisson model as a comparison model, the parameters α and δ can
still be viewed as unconditional overdispersion parameters, as we show below, although the notion
of a constant overdispersion is no longer applicable.

If we retain the definition of the overdispersion as the excess variation with respect to a Poisson
process for which the variance is equal to the mean, we need to carefully distinguish between the
marginal (unconditional) mean with random effects integrated out and the conditional mean given
random effects.

In what follows, for simplicity, we omit the dependence of the formulas on x. Contingent on random
effects, the (conditional) dispersion Var(yij |uj) = (1 +αµij)µij for the mean parameterization and
Var(yij |uj) = (1+δ)µij for the constant parameterization; the usual interpretation of the parameters
holds (conditionally).

If we consider the marginal mean or, specifically, the marginal dispersion for, for example, a
two-level random-intercept model, then

Var(yij) =
[
1 + { exp(σ2)(1 + α)− 1}E(yij)

]
E(yij)

for the mean parameterization and

Var(yij) =
[
1 + δ + { exp(σ2)− 1}E(yij)

]
E(yij)

for the constant parameterization, where σ2 is the variance component corresponding to the random
intercept.

A few things of interest compared with the standard negative binomial model. First, the random-
effects negative binomial model is not strictly an overdispersed model. The combination of values
of α and σ2 can lead to an underdispersed model, a model with smaller variability than the Poisson
variability. Underdispersed models are not as common in practice, so we will concentrate on the
overdispersion in this entry. Second, α (or δ) no longer solely determine the overdispersion and thus
cannot be viewed as unconditional overdispersion parameters. Overdispersion is now a function of
both α (or δ) and σ2. Third, the notion of a constant overdispersion is not applicable.
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Two special cases are worth mentioning. When σ2 = 0, the dispersion reduces to that of a standard
negative binomial model. When α = 0 (or δ = 0), the dispersion reduces to that of a two-level
random-intercept Poisson model, which itself is, in general, an overdispersed model; see Rabe-Hesketh
and Skrondal (2022, sec. 13.7) for more details. As such, α and δ retain the typical interpretation as
dispersion parameters relative to a random-intercept Poisson model.

Below we present two short examples of mixed-effects negative binomial regression; refer to
[ME] me and [ME] meglm for more examples including crossed-effects models.

Example 1: Two-level random-intercept model

Rabe-Hesketh and Skrondal (2022, sec. 13.7) analyze the data from Winkelmann (2004) on the
impact of the 1997 health reform in Germany on the number of doctor visits. The intent of policymakers
was to reduce government expenditures on healthcare. We use a subsample of the data restricted to
1,158 women who were employed full time the year before or after the reform.

. use https://www.stata-press.com/data/r18/drvisits
(Doctor visits)

. describe

Contains data from https://www.stata-press.com/data/r18/drvisits.dta
Observations: 2,227 Doctor visits

Variables: 8 23 Jan 2022 18:39

Variable Storage Display Value
name type format label Variable label

id int %9.0g Person ID
numvisit byte %9.0g Number of doctor visits in the

last 3 months before interview
age byte %9.0g Age in years
educ float %9.0g Education in years
married byte %9.0g 1 if married; 0 otherwise
badh byte %9.0g Self-reported health status; 1 if

bad
loginc float %9.0g Log of household income
reform byte %9.0g 0 if interview before reform; 1

if interview after reform

Sorted by:

The dependent variable, numvisit, is a count of doctor visits. The covariate of interest is a dummy
variable, reform, which indicates whether a doctor visit took place before or after the reform. Other
covariates include a self-reported health status, age, education, marital status, and a log of household
income.

https://www.stata.com/manuals/meme.pdf#meme
https://www.stata.com/manuals/memeglm.pdf#memeglm
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We first fit a two-level random-intercept Poisson model. We specify the random intercept at the
id level, that is, an individual-person level.

. mepoisson numvisit reform age educ married badh loginc || id:, irr

Fitting fixed-effects model:

Iteration 0: Log likelihood = -9326.8542
Iteration 1: Log likelihood = -5989.7308
Iteration 2: Log likelihood = -5942.7581
Iteration 3: Log likelihood = -5942.7243
Iteration 4: Log likelihood = -5942.7243

Refining starting values:

Grid node 0: Log likelihood = -4761.1257

Fitting full model:

Iteration 0: Log likelihood = -4761.1257
Iteration 1: Log likelihood = -4683.2239
Iteration 2: Log likelihood = -4646.9329
Iteration 3: Log likelihood = -4645.736
Iteration 4: Log likelihood = -4645.7371
Iteration 5: Log likelihood = -4645.7371

Mixed-effects Poisson regression Number of obs = 2,227
Group variable: id Number of groups = 1,518

Obs per group:
min = 1
avg = 1.5
max = 2

Integration method: mvaghermite Integration pts. = 7

Wald chi2(6) = 249.37
Log likelihood = -4645.7371 Prob > chi2 = 0.0000

numvisit IRR Std. err. z P>|z| [95% conf. interval]

reform .9517026 .0309352 -1.52 0.128 .8929617 1.014308
age 1.005821 .002817 2.07 0.038 1.000315 1.011357

educ 1.008788 .0127394 0.69 0.488 .9841258 1.034068
married 1.082078 .0596331 1.43 0.152 .9712905 1.205503

badh 2.471857 .151841 14.73 0.000 2.191471 2.788116
loginc 1.094144 .0743018 1.32 0.185 .9577909 1.249909
_cons .5216748 .2668604 -1.27 0.203 .191413 1.421766

id
var(_cons) .8177932 .0503902 .724761 .9227673

Note: Estimates are transformed only in the first equation to incidence-rate
ratios.

Note: _cons estimates baseline incidence rate (conditional on zero random
effects).

LR test vs. Poisson model: chibar2(01) = 2593.97 Prob >= chibar2 = 0.0000

. estimates store mepoisson

Because we specified the irr option, the parameters are reported as incidence-rate ratios. The
healthcare reform seems to reduce the expected number of visits by 5% but without statistical
significance.

Because we have only one random effect at the id level, the table shows only one variance
component. The estimate of σ2

u is 0.82 with standard error 0.05. The reported likelihood-ratio test
shows that there is enough variability between women to favor a mixed-effects Poisson regression
over a standard Poisson regression; see Distribution theory for likelihood-ratio test in [ME] me for a
discussion of likelihood-ratio testing of variance components.

https://www.stata.com/manuals/meme.pdf#memeRemarksandexamplesDistributiontheoryforlikelihood-ratiotest
https://www.stata.com/manuals/meme.pdf#meme
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It is possible that after conditioning on the person-level random effect, the counts of doctor visits
are overdispersed. For example, medical problems occurring during the time period leading to the
survey can result in extra doctor visits. We thus reexamine the data with menbreg.

. menbreg numvisit reform age educ married badh loginc || id:, irr

Fitting fixed-effects model:

Iteration 0: Log likelihood = -4610.7165
Iteration 1: Log likelihood = -4563.4682
Iteration 2: Log likelihood = -4562.3241
Iteration 3: Log likelihood = -4562.3238

Refining starting values:

Grid node 0: Log likelihood = -4643.5216

Fitting full model:

Iteration 0: Log likelihood = -4643.5216 (not concave)
Iteration 1: Log likelihood = -4555.961
Iteration 2: Log likelihood = -4518.7353
Iteration 3: Log likelihood = -4513.1951
Iteration 4: Log likelihood = -4513.1853
Iteration 5: Log likelihood = -4513.1853

Mixed-effects nbinomial regression Number of obs = 2,227
Overdispersion: mean
Group variable: id Number of groups = 1,518

Obs per group:
min = 1
avg = 1.5
max = 2

Integration method: mvaghermite Integration pts. = 7

Wald chi2(6) = 237.35
Log likelihood = -4513.1853 Prob > chi2 = 0.0000

numvisit IRR Std. err. z P>|z| [95% conf. interval]

reform .9008536 .042022 -2.24 0.025 .8221449 .9870975
age 1.003593 .0028206 1.28 0.202 .9980799 1.009137

educ 1.007026 .012827 0.55 0.583 .9821969 1.032483
married 1.089597 .064213 1.46 0.145 .970738 1.223008

badh 3.043562 .2366182 14.32 0.000 2.613404 3.544523
loginc 1.136342 .0867148 1.67 0.094 .9784833 1.319668
_cons .5017199 .285146 -1.21 0.225 .1646994 1.528377

/lnalpha -.7962692 .1190614 -1.029625 -.5629132

id
var(_cons) .4740088 .0582404 .3725642 .6030754

Note: Estimates are transformed only in the first equation to incidence-rate
ratios.

Note: _cons estimates baseline incidence rate (conditional on zero random
effects).

LR test vs. nbinomial model: chibar2(01) = 98.28 Prob >= chibar2 = 0.0000

The estimated effect of the healthcare reform now corresponds to the reduction in the number of
doctor visits by 10%—twice as much compared with the Poisson model—and this effect is significant
at the 5% level.

The estimate of the variance component σ2
u drops down to 0.47 compared with mepoisson, which

is not surprising given that now we have an additional parameter that controls the variability of the
data.
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Because the conditional overdispersion α is assumed to be greater than 0, it is parameterized
on the log scale, and its log estimate is reported as /lnalpha in the output. In our model, α̂ =
exp(−0.80) = 0.45. We can also compute the unconditional overdispersion in this model by using
exp(0.47)× (1 + 0.45)− 1 = 1.32.

The reported likelihood-ratio test shows that there is enough variability between women to favor a
mixed-effects negative binomial regression over negative binomial regression without random effects.

We can also perform a likelihood-ratio test comparing the mixed-effects negative binomial model to
the mixed-effects Poisson model. Because we are comparing two different estimators, we need to use
the force option with lrtest. In general, there is no guarantee as to the validity or interpretability of
the resulting likelihood-ratio test, but in our case we know the test is valid because the mixed-effects
Poisson model is nested within the mixed-effects negative binomial model.

. lrtest mepoisson ., force

Likelihood-ratio test
Assumption: mepoisson nested within .

LR chi2(1) = 265.10
Prob > chi2 = 0.0000

Note: The reported degrees of freedom assumes the null hypothesis is not on
the boundary of the parameter space. If this is not true, then the
reported test is conservative.

The reported likelihood-ratio test favors the mixed-effects negative binomial model. The reported
test is conservative because the test of H0 : α = 0 occurs on the boundary of the parameter space;
see Distribution theory for likelihood-ratio test in [ME] me for details.

The above extends to models with more than two levels of nesting by adding more random-effects
equations, each separated by ||. The order of nesting goes from left to right as the groups go
from biggest (highest level) to smallest (lowest level). To demonstrate a three-level model, we revisit
example 3 from [ME] mepoisson.

Example 2: Three-level random-intercept model

Rabe-Hesketh and Skrondal (2022, exercise 13.7) describe data from the Atlas of Cancer Mortality
in the European Economic Community (EEC) (Smans, Mair, and Boyle 1993). The data were analyzed
in Langford, Bentham, and McDonald (1998) and record the number of deaths among males due to
malignant melanoma during 1971–1980.

https://www.stata.com/manuals/meme.pdf#memeRemarksandexamplesDistributiontheoryforlikelihood-ratiotest
https://www.stata.com/manuals/meme.pdf#meme
https://www.stata.com/manuals/memepoisson.pdf#memepoissonRemarksandexamplesex3
https://www.stata.com/manuals/memepoisson.pdf#memepoisson
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. use https://www.stata-press.com/data/r18/melanoma
(Skin cancer (melanoma) data)

. describe

Contains data from https://www.stata-press.com/data/r18/melanoma.dta
Observations: 354 Skin cancer (melanoma) data

Variables: 6 30 May 2022 17:10
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

nation byte %11.0g n Nation ID
region byte %9.0g Region ID: EEC level-I areas
county int %9.0g County ID: EEC level-II/level-III

areas
deaths int %9.0g No. deaths during 1971-1980
expected float %9.0g No. expected deaths
uv float %9.0g UV dose, mean-centered

Sorted by:

Nine European nations (variable nation) are represented, and data were collected over geographical
regions defined by EEC statistical services as level I areas (variable region), with deaths being recorded
for each of 354 counties, which are level II or level III EEC-defined areas (variable county, which
identifies the observations). Counties are nested within regions, and regions are nested within nations.

The variable deaths records the number of deaths for each county, and expected records the
expected number of deaths (the exposure) on the basis of crude rates for the combined countries. The
variable uv is a measure of exposure to ultraviolet (UV) radiation.

In example 3 of [ME] mepoisson, we noted that because counties also identified the observations,
we could model overdispersion by using a four-level Poisson model with a random intercept at the
county level. Here we fit a three-level negative binomial model with the default mean-dispersion
parameterization.

. menbreg deaths uv, exposure(expected) || nation: || region:

Fitting fixed-effects model:

Iteration 0: Log likelihood = -1361.855
Iteration 1: Log likelihood = -1230.0211
Iteration 2: Log likelihood = -1211.049
Iteration 3: Log likelihood = -1202.5641
Iteration 4: Log likelihood = -1202.5329
Iteration 5: Log likelihood = -1202.5329

Refining starting values:

Grid node 0: Log likelihood = -1209.6951

Fitting full model:

(output omitted )
Mixed-effects nbinomial regression Number of obs = 354
Overdispersion: mean

Grouping information

No. of Observations per group
Group variable groups Minimum Average Maximum

nation 9 3 39.3 95
region 78 1 4.5 13

https://www.stata.com/manuals/memepoisson.pdf#memepoissonRemarksandexamplesex3
https://www.stata.com/manuals/memepoisson.pdf#memepoisson
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Integration method: mvaghermite Integration pts. = 7

Wald chi2(1) = 8.73
Log likelihood = -1086.3902 Prob > chi2 = 0.0031

deaths Coefficient Std. err. z P>|z| [95% conf. interval]

uv -.0335933 .0113725 -2.95 0.003 -.055883 -.0113035
_cons -.0790606 .1295931 -0.61 0.542 -.3330583 .1749372

ln(expected) 1 (exposure)

/lnalpha -4.182603 .3415036 -4.851937 -3.513268

nation
var(_cons) .1283614 .0678971 .0455187 .3619758

nation>
region

var(_cons) .0401818 .0104855 .0240938 .067012

LR test vs. nbinomial model: chi2(2) = 232.29 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

The estimates are very close to those of mepoisson. The conditional overdispersion in our model
is α̂ = exp(−4.18) = 0.0153. It is in agreement with the estimate of the random intercept at the
county level, 0.0147, in a four-level random-effects Poisson model reported by mepoisson. Because
the negative binomial is a three-level model, we gained some computational efficiency over the
four-level Poisson model.

Stored results
menbreg stores the following in e():

Scalars
e(N) number of observations
e(k) number of parameters
e(k dv) number of dependent variables
e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test
e(k f) number of fixed-effects parameters
e(k r) number of random-effects parameters
e(k rs) number of variances
e(k rc) number of covariances
e(df m) model degrees of freedom
e(ll) log likelihood
e(N clust) number of clusters
e(chi2) χ2

e(p) p-value for model test
e(ll c) log likelihood, comparison model
e(chi2 c) χ2, comparison test
e(df c) degrees of freedom, comparison test
e(p c) p-value for comparison test
e(rank) rank of e(V)
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) meglm
e(cmd2) menbreg

https://www.stata.com/manuals/memepoisson.pdf#memepoissonRemarksandexamplesfour_level_model
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e(cmdline) command as typed
e(depvar) name of dependent variable
e(wtype) weight type
e(wexp) weight expression (first-level weights)
e(fweightk) fweight variable for kth highest level, if specified
e(iweightk) iweight variable for kth highest level, if specified
e(pweightk) pweight variable for kth highest level, if specified
e(covariates) list of covariates
e(ivars) grouping variables
e(model) nbreg
e(title) title in estimation output
e(link) log
e(family) nbinomial
e(clustvar) name of cluster variable
e(dispersion) mean or constant
e(offset) offset
e(intmethod) integration method
e(n quad) number of integration points
e(chi2type) Wald; type of model χ2

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.
e(opt) type of optimization
e(which) max or min; whether optimizer is to perform maximization or minimization
e(ml method) type of ml method
e(user) name of likelihood-evaluator program
e(technique) maximization technique
e(datasignature) the checksum
e(datasignaturevars) variables used in calculation of checksum
e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
e(marginswtype) weight type for margins
e(marginswexp) weight expression for margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector
e(N g) group counts
e(g min) group-size minimums
e(g avg) group-size averages
e(g max) group-size maximums
e(V) variance–covariance matrix of the estimators
e(V modelbased) model-based variance

Functions
e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices
r(table) matrix containing the coefficients with their standard errors, test statistics, p-values,

and confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when
any r-class command is run after the estimation command.
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Methods and formulas
menbreg is a convenience command for meglm with a log link and an nbinomial family; see

[ME] meglm.

Without a loss of generality, consider a two-level negative binomial model. For cluster j, j =
1, . . . ,M , the conditional distribution of yj = (yj1, . . . , yjnj )′, given a set of cluster-level random
effects uj and the conditional overdispersion parameter α in a mean-overdispersion parameterization,
is

f(yj |uj , α) =

nj∏
i=1

{
Γ(yij + r)

Γ(yij + 1)Γ(r)
prij(1− pij)yij

}

= exp

[
nj∑
i=1

{ logΓ(yij + r)− logΓ(yij + 1)− logΓ(r) + c(yij , α)}

]
where c(yij , α) is defined as

− 1

α
log{1 + exp(ηij + logα)} − yij log{1 + exp(−ηij − logα)}

and r = 1/α, pij = 1/(1 + αµij), and ηij = xijβ + zijuj .

For the constant-overdispersion parameterization with the conditional overdispersion parameter δ,
the conditional distribution of yj is

f(yj |uj , δ) =

nj∏
i=1

{
Γ(yij + rij)

Γ(yij + 1)Γ(rij)
prij (1− p)yij

}

= exp

[
nj∑
i=1

{ logΓ(yij + rij)− logΓ(yij + 1)− logΓ(rij) + c(yij , δ)}

]

where c(yij , δ) is defined as

−
(µij
δ

+ yij

)
log(1 + δ) + yij logδ

and rij = µij/δ and p = 1/(1 + δ).

For conciseness, let γ denote either conditional overdispersion parameter. Because the prior
distribution of uj is multivariate normal with mean 0 and q × q variance matrix Σ, the likelihood
contribution for the jth cluster is obtained by integrating uj out of the joint density f(yj ,uj , γ),

Lj(β,Σ, γ) = (2π)−q/2 |Σ|−1/2
∫
f(yj |uj , γ) exp

(
−u′jΣ−1uj/2

)
duj

= (2π)−q/2 |Σ|−1/2
∫

exp {h (β,Σ,uj , γ)} duj
(4)

where
h (β,Σ,uj , γ) = f(yj |uj , γ)− u′jΣ

−1uj/2

and for convenience, in the arguments of h(·) we suppress the dependence on the observable data
(yj ,Xj ,Zj).

https://www.stata.com/manuals/memeglm.pdf#memeglm
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The integration in (4) has no closed form and thus must be approximated; see Methods and
formulas in [ME] meglm for details.

menbreg supports multilevel weights and survey data; see Methods and formulas in [ME] meglm
for details.
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