Title

solve_tol() - Tolerance used by solvers and inverters

Description	Syntax	Remarks and examples	Conformability
Diagnostics	Also see		

Description

solve_tol (Z, usertol) returns the tolerance used by many Mata solvers to solve $A X=B$ and by many Mata inverters to obtain A^{-1}. usertol is the tolerance specified by the user or is missing value if the user did not specify a tolerance.

Syntax

real scalar solve_tol(numeric matrix Z, real scalar usertol)

Remarks and examples

The tolerance used by many Mata solvers to solve $A X=B$ and by many Mata inverters to obtain A^{-1} is

$$
\begin{array}{ll}
\text { eta }=s * \frac{\operatorname{trace}(\operatorname{abs}(Z))}{n} & \text { when } s>0 \tag{1}\\
\text { eta }=-s & \text { when } s \leq 0
\end{array}
$$

where $s=1 \mathrm{e}-13$ or a value specified by the user, n is the \min (rows $(Z), \operatorname{cols}(Z)$), and Z is a matrix related to A, usually by some form of decomposition, but could be A itself (for instance, if A were triangular). See, for instance, [M-5] solvelower() and [M-5] cholsolve().

When usertol >0 and usertol $<$. is specified, solvetol() returns eta calculated with $s=$ usertol.
When usertol ≤ 0 is specified, solvetol () returns -usertol.
When usertol \geq. is specified, solvetol() returns a default result, calculated as

1. If the matasolvetol setting is set to . (missing), the value of eta is computed using $s=1 \mathrm{e}-13$.
2. If the matasolvetol setting is set to positive, the value of eta is computed using $s=$ st_numscalar("c(matasolvetol)").
3. If the matasolvetol setting is set to 0 or negative, the value of eta is -st_numscalar("c(matasolvetol)").

Conformability

solve_tol (Z, usertol):

$$
\begin{aligned}
Z: & r \times c \\
\text { usertol: } & 1 \times 1 \\
\text { result: } & 1 \times 1
\end{aligned}
$$

Diagnostics

solve_tol (Z, usertol) skips over missing values in Z in calculating (1); n is defined as the number of nonmissing elements on the diagonal.

Also see

[M-4] Utility - Matrix utility functions

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Organization of the United Nations. StataNow and NetCourseNow are trademarks of StataCorp LLC. Other brand and product names are registered trademarks or trademarks of their respective companies. Copyright (c) 1985-2023 StataCorp LLC, College Station, TX,
 USA. All rights reserved.
For suggested citations, see the FAQ on citing Stata documentation.

