
Title stata.com

panelsetup() — Panel-data processing

Description Syntax Remarks and examples Conformability
Diagnostics Also see

Description

These functions assist with the processing of panel data. The idea is to make it easy and fast to write
loops like

for (i=1; i<=number_of_panels; i++) {
X = matrix corresponding to panel i
. . .
. . . (calculations using X) . . .
. . .

}

Using these functions, this loop could become

st_view(Vid, ., "idvar", "touse")
st_view(V, ., ("x1", "x2"), "touse")
info = panelsetup(Vid, 1)
for (i=1; i<=rows(info); i++) {

X = panelsubmatrix(V, i, info)
. . .
. . . (calculations using X) . . .
. . .

}

panelsetup(V, idcol, . . .) sets up panel processing. It returns a matrix (info) that is passed to
other panel-processing functions.

panelstats(info) returns a row vector containing the number of panels, number of observations,
minimum number of observations per panel, and maximum number of observations per panel.

panelsubmatrix(V, i, info) returns a matrix containing the contents of V for panel i.

panelsubview(SV, V, i, info) does nearly the same thing. Rather than returning a matrix, however,
it places the matrix in SV . If V is a view, then the matrix placed in SV will be a view.

Syntax
info = panelsetup(V, idcol)

info = panelsetup(V, idcol, minobs)

info = panelsetup(V, idcol, minobs, maxobs)

real rowvector panelstats(info)

real matrix panelsubmatrix(V, i, info)

void panelsubview(SV, V, i, info)

1

http://stata.com

2 panelsetup() — Panel-data processing

where
V: real or string matrix, possibly a view

idcol: real scalar
minobs: real scalar
maxobs: real scalar

info: real matrix
i: real scalar

SV: matrix to be created, possibly as view

Remarks and examples stata.com

Remarks are presented under the following headings:

Definition of panel data
Definition of problem
Preparation
Use of panelsetup()
Using panelstats()
Using panelsubmatrix()
Using panelsubview()

Definition of panel data

Panel data include multiple observations on subjects, countries, etc.:

Subject ID Time ID x1 x2

1 1 4.2 3.7
1 2 3.2 3.7
1 3 9.2 4.2

2 1 1.7 4.0
2 2 1.9 5.0

3 1 9.5 1.3
...

...
...

...

In the above dataset, there are three observations for subject 1, two for subject 2, etc. We labeled
the identifier within subject to be time, but that is only suggestive, and in any case, the secondary
identifier will play no role in what follows.

If we speak about the first panel, we are discussing the first 3 observations of this dataset. If we
speak about the second, that corresponds to observations 4 and 5.

It is common to refer to panel numbers with the letter i. It is common to refer to the number of
observations in the ith panel as Ti even when the data within panel have nothing to do with repeated
observations over time.

http://stata.com

panelsetup() — Panel-data processing 3

Definition of problem

We want to calculate some statistic on panel data. The calculation amounts to

K∑
i=1

f (Xi)

where the sum is performed across panels, and Xi is the data matrix for panel i. For instance, given
the example in the previous section

X1 =

 4.2 3.7
3.2 3.7
9.2 4.2

and X2 is a similarly constructed 2 × 2 matrix.

Depending on the nature of the calculation, there will be problems for which

1. we want to use all the panels,

2. we want to use only panels for which there are two or more observations, and

3. we want to use the same number of observations in all the panels (balanced panels).

In addition to simple problems of the sort,

K∑
i=1

f (Xi)

you may also need to deal with problems of the form,

K∑
i=1

f (Xi, Yi, . . .)

That is, you may need to deal with problems where there are multiple matrices per subject.

We use the sum operator purely for illustration, although it is the most common. Your problem might
be

F(X1, Y1, . . . ,X2, Y2, . . .)

Preparation

Before using the functions documented here, create a matrix or matrices containing the data. For
illustration, it will be sufficient to create V containing all the data in our example problem:

4 panelsetup() — Panel-data processing

V =

1 1 4.2 3.7
1 2 3.2 3.7
1 3 9.2 4.2
2 1 1.7 4.0
2 2 1.9 5.0
3 1 9.5 1.3
...

...
...

...

But you will probably find it more convenient (and we recommend) if you create at least two
matrices, one containing the subject identifier and the other containing the x variables (and omit the
within-subject ”time” identifier altogether):

V1 =

1
1
1
2
2
3
...

V 2 =

4.2 3.7
3.2 3.7
9.2 4.2
1.7 4.0
1.9 5.0
9.5 1.3

...
...

In the above, matrix V1 contains the subject identifier, and matrix V2 contains the data for all the Xi

matrices in
K∑
i=1

f (Xi)

If your calculation is
K∑
i=1

f (Xi, Yi, . . .)

create additional V matrices, V3 corresponding to Yi, and so on.

To create these matrices, use [M-5] st view()

st_view(V1, ., "idvar", "touse")
st_view(V2, ., ("x1", "x2"), "touse")

although you could use [M-5] st data() if you preferred. Using st view() will save memory. You
can also construct V1, V2, . . . , however you wish; they are just matrices. Be sure that the matrices
align, for example, that row 4 of one matrix corresponds to row 4 of another. We did that above by
assuming a touse variable had been included (or constructed) in the dataset.

Use of panelsetup()

panelsetup(V, idcol, . . .) sets up panel processing, returning a K × 2 matrix that contains a
row for each panel. The row records the first and last observation numbers (row numbers in V) that
correspond to the panel.

https://www.stata.com/manuals/m-5st_view.pdf#m-5st_view()
https://www.stata.com/manuals/m-5st_data.pdf#m-5st_data()

panelsetup() — Panel-data processing 5

For instance, with our example, panelsetup() will return
1 3
4 5
6 9
...

...

The first panel is recorded in observations 1 to 3; it contains 3− 1+ 1 = 3 observations. The second
panel is recorded in observations 4 to 5 and it contains 5 − 4 + 1 = 2 observations, and so on. We
recorded the third panel as being observations 6 to 9, although we did not show you enough of the
original data for you to know that 9 was the last observation with ID 3.

panelsetup() has many more capabilities in constructing this result, but it is important to appreciate
that returning this observation-number matrix is all that panelsetup() does. This matrix is all that
other panel functions need to know. They work with the information produced by panelsetup(),
but they will equally well work with any two-column matrix that contains observation numbers.
Correspondingly, panelsetup() engages in no secret behavior that ties up memory, puts you in a
mode, or anything else. panelsetup() merely produces this matrix.

The number of rows of the matrix panelsetup() returns equals K, the number of panels.

The syntax of panelsetup() is

info = panelsetup(V, idcol, minobs, maxobs)

The last two arguments are optional.

The required argument V specifies a matrix containing at least the panel identification numbers and
required argument idcol specifies the column of V that contains that ID. Here we will use the matrix
V1, which contains only the identification number:

info = panelsetup(V1, 1)

The two optional arguments are minobs and maxobs. minobs specifies the minimum number of
observations within panel that we are willing to tolerate; if a panel has fewer observations, we want
to omit it entirely. For instance, were we to specify

info = panelsetup(V1, 1, 3)

then the matrix panelsetup() would contain fewer rows. In our example, the returned info matrix
would contain 1 3

6 9
...

...

Observations 4 and 5 are now omitted because they correspond to a two-observation panel, and we
said only panels with three or more observations should be included.

We chose three as a demonstration. In fact, it is most common to code

info = panelsetup(V1, 1, 2)

because that eliminates the singletons (panels with one observation).

The final optional argument is maxobs. For example,

info = panelsetup(V1, 1, 2, 5)

6 panelsetup() — Panel-data processing

means to include only up to five observations per panel. Any observations beyond five are to be
trimmed. If we code

info = panelsetup(V1, 1, 3, 3)

then all the panels contained in info would have three observations. If a panel had fewer than three
observations, it would be omitted entirely. If a panel had more than three observations, only the first
three would be included.

Panel datasets with the same number of observations per panel are said to be balanced. panelsetup()
also provides panel-balancing capabilities. If you specify maxobs as 0, then

1. panelsetup() first calculates the min(Ti) among the panels with minobs observations or
more. Call that number m.

2. panelsetup() then returns panelsetup(V1, idcol, m, m), thus creating balanced panels
of size m and producing a dataset that has the maximum number of within-panel observations
given it has the maximum number of panels.

If we coded

info = panelsetup(V1, 1, 2, 0)

then panelsetup() would create the maximum number of panels with the maximum number of
within-panel observations subject to the constraint of no singletons and the panels being balanced.

Using panelstats()

panelstats(info) can be used on any two-column matrix that contains observation numbers.
panelstats() returns a row vector containing

panelstats()[1] = number of panels (same as rows(info))
panelstats()[2] = number of observations
panelstats()[3] = min(Ti)
panelstats()[4] = max(Ti)

Using panelsubmatrix()

Having created an info matrix using panelsetup(), you can obtain the matrix corresponding to the
ith panel using

X = panelsubmatrix(V, i, info)

It is not necessary that panelsubmatrix() be used with the same matrix that was used to produce
info. We created matrix V1 containing the ID numbers, and we created matrix V2 containing the x
variables

st_view(V1, ., "idvar", "touse")
st_view(V2, ., ("x1", "x2"), "touse")

and we create info using V1:

info = panelsetup(V1, 1)

panelsetup() — Panel-data processing 7

We can now create the corresponding X matrix by coding

X = panelsubmatrix(V2, i, info)

and, had we created a V3 matrix corresponding to Yi, we could also code

Y = panelsubmatrix(V3, i, info)

and so on.

Using panelsubview()

panelsubview() works much like panelsubmatrix(). The difference is that rather than coding

X = panelsubmatrix(V, i, info)

you code

panelsubview(X, V, i, info)

The matrix to be defined becomes the first argument of panelsubview(). That is because panel-
subview() is designed especially to work with views. panelsubmatrix() will work with views,
but panelsubview() does something special. Rather than returning an ordinary matrix (an array,
in the jargon), if V is a view, panelsubview() returns a view in its first argument. Views save
memory.

Views can save much memory, so it would seem that you would always want to use panelsubview()
in place of panelsubmatrix(). What is not always appreciated, however, is that it takes Mata
longer to access the data recorded in views, and so there is a tradeoff.

If the panels are likely to be large, you want to use panelsubview(). Conserving memory trumps
all other considerations.

In fact, the panels that occur in most datasets are not that large, even when the dataset itself is. If
you are going to make many calculations on X, you may wish to use panelsubmatrix().

Both panelsubmatrix() and panelsubview() work with view and nonview matrices. pan-
elsubview() produces a regular matrix when the base matrix V is not a view, just as does
panelsubmatrix(). The difference is that panelsubview() will produce a view when V is a
view, whereas panelsubmatrix() always produces a nonview matrix.

Conformability

panelsetup(V, idcol, minobs, maxobs):
V: r × c

idcol: 1 × 1
minobs: 1 × 1 (optional)
maxobs: 1 × 1 (optional)

result: K × 2, K = number of panels

panelstats(info):
info: K × 2

result: 1 × 4

8 panelsetup() — Panel-data processing

panelsubmatrix(V, i, info):
V: r × c
i: 1 × 1, 1 ≤ i ≤ rows(info)

info: K × 2
result: t × c, t = number of obs. in panel

panelsubview(SV, V, i, info):
input:

SV: irrelevant
V: r × c
i: 1 × 1, 1 ≤ i ≤ rows(info)

info: K × 2
result: t × c, t = number of obs. in panel

output:
SV: t × c, t = number of obs. in panel

Diagnostics

panelsubmatrix(V, i, info) and panelsubview(SV, V, i, info) abort with error if i < 1 or
i > rows(info).

panelsetup() can return a 0 × 2 result.

Also see
[M-4] Utility — Matrix utility functions

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and
Stata Press are registered trademarks with the World Intellectual Property Organization
of the United Nations. StataNow and NetCourseNow are trademarks of StataCorp
LLC. Other brand and product names are registered trademarks or trademarks of their
respective companies. Copyright c© 1985–2023 StataCorp LLC, College Station, TX,
USA. All rights reserved.

®

For suggested citations, see the FAQ on citing Stata documentation.

https://www.stata.com/manuals/m-4utility.pdf#m-4Utility
https://www.stata.com/support/faqs/resources/citing-software-documentation-faqs/

