Description	Syntax	Remarks and examples	Conformability
Diagnostics	Also see		

Description

norm (A) returns norm ($A, 2$).
norm (A, p) returns the value of the norm of A for the specified p. The possible values and the meaning of p depend on whether A is a vector or a matrix.

When A is a vector, norm (A, p) returns

```
sum(abs(A) : ^ p ) ^ (1/p) if 1\leqp<.
max(abs(A)) if p\geq.
```

When A is a matrix, returned is

```
p norm(A, p)
0 sqrt(trace(\operatorname{conj}(A)'A))
1 max(colsum(abs(A)))
2 max(svdsv(A))
    max(rowsum(abs(A)))
```


Syntax

real scalar norm (numeric matrix A)
real scalar norm (numeric matrix A, real scalar p)

Remarks and examples

norm (A) and norm (A, p) calculate vector norms and matrix norms. A may be real or complex and need not be square when it is a matrix.

The formulas presented above are not the actual ones used in calculation. In the vector-norm case when $1 \leq p<$. , the formula is applied to $A: / \max (\operatorname{abs}(A))$ and the result then multiplied by $\max (\operatorname{abs}(A))$. This prevents numerical overflow. A similar technique is used in calculating the matrix norm for $p=0$, and that technique also avoids storage of $\operatorname{conj}(A)^{\prime} A$.

Conformability

norm (A):

$A:$	
result:	
$1 \times c$	

$\operatorname{norm}(A, p)$:

$A:$	$r \times c$
$p:$	1×1
result:	1×1

Diagnostics

The norm() is defined to return 0 if A is void and missing if any element of A is missing.
norm (A, p) aborts with error if p is out of range. When A is a vector, p must be greater than or equal to 1 . When A is a matrix, p must be $0,1,2$, or . (missing).
$\operatorname{norm}(A)$ and norm (A, p) return missing if the 2 -norm is requested and the singular value decomposition does not converge, an event not expected to occur; see [M-5] svd().

Also see

[M-4] Matrix - Matrix functions

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Organization of the United Nations. StataNow and NetCourseNow are trademarks of StataCorp LLC. Other brand and product names are registered trademarks or trademarks of their respective companies. Copyright (c) 1985-2023 StataCorp LLC, College Station, TX,
 USA. All rights reserved.

For suggested citations, see the FAQ on citing Stata documentation.

