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Description
In this example, we show how to estimate and interpret the results of an extended regression model

with a continuous outcome and endogenous binary covariate.

Remarks and examples stata.com

Suppose that we want to study the effect of having a college degree on wages. One way to approach
the problem is to look at the coefficient on an indicator for whether an individual has a college degree.
This gives us an idea of how different the average wage is for individuals with a college degree
compared with those without one. However, as in [ERM] Example 1a, we suspect that unobserved
factors such as ability affect both the probability of graduating from college and wage level. Thus,
we need to account for the potential endogeneity of the indicator for having a college degree.

In our fictional study, we collect data on the hourly wages (wage) and educational attainment
(college) of 6,000 adults. We believe that differences in job tenure (tenure) and age (age) may
also affect wages. We can control for these covariates by specifying them in the main equation. We
specify college in the endogenous() option, but this time we also include the probit suboption
to indicate that the variable is binary. We model graduation as a function of the level of parental
education (peduc), which we assume does not have a direct effect on wage.

1

http://stata.com
http://stata.com
https://www.stata.com/manuals/ermexample1a.pdf#ermExample1a


2 Example 2a — Linear regression with binary endogenous covariate

. use https://www.stata-press.com/data/r18/wageed
(Wages for 20 to 74 year olds, 2015)

. eregress wage c.age##c.age tenure, endogenous(college = i.peduc, probit)
> vce(robust)

Iteration 0: Log pseudolikelihood = -18063.148
Iteration 1: Log pseudolikelihood = -18060.2
Iteration 2: Log pseudolikelihood = -18060.164
Iteration 3: Log pseudolikelihood = -18060.164

Extended linear regression Number of obs = 6,000
Wald chi2(4) = 7584.74

Log pseudolikelihood = -18060.164 Prob > chi2 = 0.0000

Robust
Coefficient std. err. z P>|z| [95% conf. interval]

wage
age .4200372 .0163312 25.72 0.000 .3880286 .4520457

c.age#c.age -.0033523 .0001759 -19.06 0.000 -.003697 -.0030075

tenure .4921838 .0182788 26.93 0.000 .4563581 .5280095

college
Yes 5.238087 .1721006 30.44 0.000 4.900776 5.575398

_cons 5.524288 .3428735 16.11 0.000 4.852268 6.196307

college
peduc

College .8605996 .0361723 23.79 0.000 .7897032 .9314959
Graduate 1.361257 .0490862 27.73 0.000 1.26505 1.457465

Doctorate 1.583818 .119513 13.25 0.000 1.349577 1.818059

_cons -.9731264 .0294779 -33.01 0.000 -1.030902 -.9153508

var(e.wage) 8.99487 .2465919 8.524314 9.491402

corr(e.col~e,
e.wage) .5464027 .0286061 19.10 0.000 .4879055 .600014

The estimated correlation between the errors from the main and auxiliary equations is 0.55 and
is significantly different from 0. We conclude that having a college degree is endogenous and that
unobservable factors that increase the probability of graduating from college tend to also increase
wages.

We find that graduating from college increases the expected wage by $5.24 given a person’s age
and employment tenure. This estimate is different than comparing the average wages for college
graduates and noncollege graduates.

. tabulate college, summarize(wage)

Indicator
for college Summary of Hourly wage

degree Mean Std. dev. Freq.

No 17.768516 3.0674174 3,766
Yes 25.520703 5.045888 2,234

Total 20.654913 5.4248886 6,000
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The difference in the average wages is $7.75, but unlike our regression coefficient, that value does
not adjust for the different distribution of ages and tenures among college graduates and noncollege
graduates.

Another approach to this problem is the potential-outcomes framework. With this approach, we
consider the expected wage for each individual without a college degree versus the expected wage
for each individual with a college degree. Specifically, we might like to know the average expected
change in wages for those who complete college. This is called the average treatment effect on the
treated. We consider this approach in [ERM] Example 2b and [ERM] Example 2c.

[ERM] Example 2c also includes an interpretation of how the expected level of income varies
by age, tenure, and whether one graduates from college. That analysis could also be applied to this
model.

Also see
[ERM] eregress — Extended linear regression

[ERM] eregress postestimation — Postestimation tools for eregress and xteregress

[ERM] estat teffects — Average treatment effects for extended regression models

[ERM] Intro 9 — Conceptual introduction via worked example
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