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Description
This introduction estimates and interprets the parameters of a simple stochastic growth model using

Bayesian methods.

Remarks and examples stata.com

Remarks are presented under the following headings:

The model
Parameter estimation
Posterior diagnostics and plots
Impulse responses

The model

The model contains equations that jointly determine output Yt, the interest rate Rt, consumption
Ct, capital Kt, and productivity Zt. The model contains four parameters: α, β, δ, and ρ. This model
is a variant on the model used in Schmitt-Grohé and Uribe (2004):
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Kt+1 = Yt − Ct + (1− δ)Kt (4)

ln(Zt+1) = ρ ln(Zt) + et+1 (5)

Equation (1) defines a relationship between consumption growth Ct+1/Ct and the real interest
rate Rt+1. Equation (2) is a production function for output Yt as a function of productivity Zt and
capital Kt. Equation (3) is a model for the interest rate. Equation (4) is the equation for capital
accumulation; capital in the next period is equal to underappreciated capital this period (1 − δ)Kt

plus unconsumed output Yt−Ct. Equation (5) is a law of motion for productivity Zt. The parameter
β is a discount factor in the consumption equation, the parameter α is a production parameter in the
output equation, the parameter δ is a depreciation parameter in the capital equation, and the parameter
ρ is a persistence parameter in the productivity equation.

The state variables are the current-period capital stock and the level of productivity, (Kt, Zt).
The control variables are consumption, the interest rate, and output, (Ct, Rt, Yt). We estimate the
parameters of the linearized version of the model using Bayesian methods.
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Parameter estimation
We specify priors for the model parameters. The discount rate β must lie between 0 and 1, with

common values in the range (0.95, 0.99). The capital share α must lie between 0 and 1 and is usually
estimated to be about one-third. The depreciation rate δ must lie between 0 and 1, and a common
value for it is 0.025 or 0.10. The autocorrelation parameter ρ must be less than 1 in absolute value
and is usually thought to be positive and close to 1. Our prior choices for all parameters are driven
by these theoretical considerations. As all four parameters are plausibly restricted to the unit interval,
a beta distribution is chosen for all four priors.

The parameters of the beta distribution were chosen to put the weight of prior mass on theoretically
appropriate values. For the discount factor {beta}, this is the range (0.90, 0.99). For the depreciation
parameter {delta}, this is the range (0.03, 0.05). For the capital share {alpha}, this is the range
(0.3, 0.4). For the autoregressive parameter, this is the range (0.6, 0.99). The prior means for each
parameter are as follows: {beta} prior mean is 0.95; {delta} prior mean is 0.044; {alpha} prior
mean is 0.38; and {rhoz} prior mean is 0.8.

. use https://www.stata-press.com/data/r18/usmacro2
(Federal Reserve Economic Data - St. Louis Fed, 2017-01-15)

. bayes, prior({beta}, beta( 95, 5))
> prior({delta}, beta( 40, 860))
> prior({alpha}, beta(360, 590))
> prior({rhoz}, beta( 80, 20)) dots rseed(17) :
> dsgenl (1 = {beta}*(c/F.c)*(1 + F.r - {delta}))
> (y = z*k^({alpha}))
> (r = {alpha}*y/k)
> (F.k = y - c + (1-{delta})*k)
> (ln(F.z) = {rhoz}*ln(z)),
> exostate(z) endostate(k) observed(y) unobserved(c r)
note: initial parameter vector set to means of priors.
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000..... done
Simulation 10000 .........1000.........2000.........3000.........4000.........
> 5000.........6000.........7000.........8000.........9000.........10000 done

Model summary

Likelihood:
y ~ dsgell({beta},{delta},{alpha},{rhoz},{sd(e.z)})

Priors:
{beta} ~ beta(95,5)

{delta} ~ beta(40,860)
{alpha} ~ beta(360,590)
{rhoz} ~ beta(80,20)

{sd(e.z)} ~ igamma(.01,.01)
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Bayesian first-order DSGE model MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Sample: 1955q1 thru 2015q4 Number of obs = 244

Acceptance rate = .2479
Efficiency: min = .0228

avg = .05
Log marginal-likelihood = -670.33605 max = .05948

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

beta .9696788 .0138534 .000918 .9714437 .9379939 .9904246
delta .0412205 .0063456 .000272 .0408097 .029939 .0545771
alpha .3790517 .0154948 .000645 .3792245 .3486508 .4096519
rhoz .6178456 .0442668 .001815 .618141 .5340957 .7060575

sd(e.z) 3.54923 .1751019 .007431 3.544049 3.238064 3.931496

The model summary reports the prior and likelihood specifications, including the default inverse-gamma
prior for the standard deviation of the shock.

The output header reports the burn-in length and MCMC sample size, as well as information about
the efficiency of the Metropolis–Hastings sampler. The overall acceptance rate is 0.25, with sampling
efficiencies between 0.023 and 0.059.

The posterior mean for {beta} is 0.97, close to the prior mean of 0.95. The posterior mean
for {delta} is 0.041, close to its prior mean of 0.044. The posterior mean for {alpha} is 0.38,
identical to its prior mean. The posterior mean for {rhoz} is 0.62, substantially different from its
prior mean of 0.80. Overall, many of the parameters show little updating, indicating that the likelihood
is uninformative along several dimensions of the model’s parameter space. The posterior results for
{beta}, {delta}, and {alpha} are mainly driven by the prior.

Posterior diagnostics and plots

We begin by investigating effective sample sizes for each parameter.

. bayesstats ess

Efficiency summaries MCMC sample size = 10,000
Efficiency: min = .0228

avg = .05
max = .05948

ESS Corr. time Efficiency

beta 227.97 43.87 0.0228
delta 545.58 18.33 0.0546
alpha 576.58 17.34 0.0577
rhoz 594.79 16.81 0.0595

sd(e.z) 555.25 18.01 0.0555

The effective sample size for the discount factor {beta} is somewhat low relative to the other
parameters, which indicates that blocking may improve sampling efficiency.
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Because {rhoz} was the only internal parameter to receive substantial updating, we look at its
full set of posterior diagnostic plots.

. bayesgraph diagnostics {rhoz}
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Autocorrelations tail off at a moderate pace, the trace plot shows reasonable mixing, and the density
plot shows that the first- and second-half densities do not substantially differ from the full-sample
density.

Next, we generate prior–posterior plots for two parameters, the capital share and the autoregressive
parameter.

. bayesgraph kdensity {alpha},
> addplot(function Prior = betaden(360, 590, x),
> legend(on label(1 "Posterior")))

. bayesgraph kdensity {rhoz},
> addplot(function Prior = betaden(80, 20, x),
> legend(on label(1 "Posterior")))
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The posterior density of {alpha} does not differ from its prior density. This situation indicates a flat
likelihood along the {alpha} dimension. By contrast, the posterior density of {rhoz} does differ
from its prior density. The posterior mean has fallen to 0.6 from 0.8.

Prior–posterior plots for the discount rate {beta} and the depreciation parameter {delta} are

. bayesgraph kdensity {beta},
> addplot(function Prior = betaden(95, 5, x),
> legend(on label(1 "Posterior")))

. bayesgraph kdensity {delta},
> addplot(function Prior = betaden(40, 860, x),
> legend(on label(1 "Posterior")))
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The posterior distribution of {beta} lies close to its prior. The posterior distribution of {delta}
lies on top of its prior, indicating that the data provide little information along this dimension of the
model.

Impulse responses

Next, we explore the response of model variables to a shock to the state variable z. We begin by
saving off our MCMC results in a dataset.

. bayes, saving(bayes_dsgenl_sim, replace)

Next, we set up the impulse–response function file and impulse–response functions themselves.
We are using the [BAYES] bayesirf command. We specify step(20) to plot the first 20 periods after
the shock. Because the unit of time in this model is one quarter, 20 periods correspond to 5 years.

https://www.stata.com/manuals/bayesbayesirf.pdf#bayesbayesirf
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. bayesirf set rbcmodel

. bayesirf create model1, step(20)

. bayesirf graph irf, impulse(z) byopts(yrescale)
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Each panel displays the response of one model variable to the impulse. Each step is one quarter, so
that four steps are one year after the shock. In the top-left panel, consumption c rises and follows a
mostly flat trajectory for the first eight periods after the shock and then falls to return to its steady
state. In the top-middle panel, the capital stock k does not move in the first period but rises afterward
in a hump-shaped pattern. In the top-right panel, the interest rate r rises on impact, remains elevated
for the first four periods, and then dips below its steady-state value in the fifth period; it returns
to its steady state from below. In the bottom-left panel, output y rises on impact and then declines
monotonically back to its steady state. The bottom-right panel shows the evolution of the state variable
z itself; it rises on a shock and then falls monotonically back to its steady state.

Reference
Schmitt-Grohé, S., and M. Uribe. 2004. Solving dynamic general equilibrium models using a second-order approximation

to the policy function. Journal of Economic Dynamics and Control 28: 755–775. https://doi.org/10.1016/S0165-
1889(03)00043-5.
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