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Description
Fitting DSGE models is notoriously difficult. We discuss the causes of convergence problems and

some solutions.

Remarks and examples stata.com

When the iteration process never gets started or when it never ends are two types of convergence
problems. When it never gets started, you will see something like

. dsge ...
identification failure at starting values

(output omitted )

This error occurs when the initial values specify a model that violates the stability conditions required
for DSGE estimation; see [DSGE] Intro 5 for a discussion of this issue and some solutions.

When the iteration process never ends, the cause is either that there is no unique solution or that
the optimizer cannot find the unique solution. When there is no unique solution, the parameters are
said to be not identified. In this case, you see (not concave) after each iteration, like

. dsge ...
(output omitted )

Iteration 50: log likelihood = -337504.44 (not concave)
Iteration 51: log likelihood = -337503.52 (not concave)
Iteration 52: log likelihood = -337502.13 (not concave)
.
.
.

See [DSGE] Intro 6 for a discussion of this issue and some solutions.

Even when the iterations get started and the parameters are identified, convergence problems are
still common. In these cases, there are usually many parameters.

Changing the optimization technique is the simplest method to overcome a convergence problem,
and it can be surprisingly effective. By default, dsge and dsgenl use the Broyden–Fletcher–Goldfarb–
Shanno (BFGS) algorithm for five iterations before switching to a modified Newton–Raphson (NR)
algorithm. The BFGS algorithm is especially effective at finding a maximum of the DSGE log-likelihood
function from poor initial values. In some cases, simply specifying technique(bfgs 200 nr) can
overcome the convergence problem.

The best way to overcome a convergence problem is to provide better initial values. The optimizer
used by dsge and dsgenl will almost always converge when it is provided with good initial values
and the parameters are identified. Specifying good initial values that come from theory or previous
empirical work can solve your convergence problem. You can specify initial values inside the scalar
substitutable expressions or by using the from() option; see examples 1 and 2 for details.
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Sometimes, you have a convergence problem and do not have good initial values. One way to get
initial values is to estimate a series of progressively less constrained models. This process usually
produces convergence when the parameters are identified. See example 3 for details.

Example 1: Specifying starting values in scalar substitutable expressions

Models with lagged state variables and other models that allow for more persistent processes can
exhibit convergence problems. Equations (1)–(6) model the observed control variable (inflation) pt,
the unobserved control variable (output gap) yt, and the observed control variable (interest rate) rt
as functions of the states ut and zt. Lzt+1 is an auxiliary state that allows zt to be a second-order
process instead of a first-order process.

pt = βEt(pt+1) + κyt (1)

yt = Et(yt+1)− {rt − Et(pt+1)− zt} (2)

rt =
1

β
pt + ut (3)

ut+1 = ρuut + ξt+1 (4)

zt+1 = ρz1zt + ρz2Lzt + εt+1 (5)

Lzt+1 = zt (6)

Suppose that previous empirical work suggests the initial values of β = 0.5, κ = 0.2, ρu = 0.7,
ρz1 = 0.7, and ρz2 = 0.2. Inside a scalar substitutable expression, we can specify an initial value
by typing {parameter = value}. We specify these initial values for the parameters in the scalar
substitutable expressions in our model specification below.

. use https://www.stata-press.com/data/r18/usmacro2
(Federal Reserve Economic Data - St. Louis Fed, 2017-01-15)

. dsge (p = {beta=.5}*F.p + {kappa=.2}*y)
> (y = F.y - (r - F.p - z), unobserved)
> (r = (1/{beta})*p + u)
> (F.u = {rho_u=.7}*u, state)
> (F.z = {rho_z1=.7}*z + {rho_z2=.2}*Lz, state)
> (F.Lz = z, state noshock)
(setting technique to bfgs)
Iteration 0: Log likelihood = -1117.6457
Iteration 1: Log likelihood = -936.74558 (backed up)
Iteration 2: Log likelihood = -846.69924 (backed up)
Iteration 3: Log likelihood = -835.21274 (backed up)
Iteration 4: Log likelihood = -782.8407 (backed up)
(switching technique to nr)
Iteration 5: Log likelihood = -772.42535 (not concave)
Iteration 6: Log likelihood = -754.37282
Iteration 7: Log likelihood = -753.14308
Iteration 8: Log likelihood = -753.07801
Iteration 9: Log likelihood = -753.07788
Iteration 10: Log likelihood = -753.07788
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DSGE model

Sample: 1955q1 thru 2015q4 Number of obs = 244
Log likelihood = -753.07788

Coefficient Std. err. z P>|z| [95% conf. interval]

/structural
beta .5154873 .0770495 6.69 0.000 .3644731 .6665015

kappa .1662426 .0468473 3.55 0.000 .0744236 .2580616
rho_u .6979877 .0452071 15.44 0.000 .6093834 .786592

rho_z1 .6735472 .2665984 2.53 0.012 .1510239 1.196071
rho_z2 .2710011 .2564554 1.06 0.291 -.2316422 .7736444

sd(e.u) 2.315263 .2992181 1.728806 2.90172
sd(e.z) .7720675 .1716204 .4356977 1.108437

Note that the output includes results for the standard deviations of the shocks, for which there are
no scalar substitutable expressions. In example 2, we illustrate how to specify initial values for all
the parameters using the from() option.

Example 2: Specifying starting values using from()

In example 1, we specified initial values inside the scalar substitutable expressions. You cannot
specify initial values for the standard deviations of the shocks this way, because the shocks do not
appear in any scalar substitutable expressions. We can specify starting values for any, or all, of the
parameters using the from() option.

from() has several syntaxes, but the vector of starting values is most frequently used in DSGE
applications. In this syntax, we specify a row vector containing the initial values β = 0.5, κ = 0.2,
ρu = 0.7, ρz1 = 0.7, ρz2 = 0.2, σe.u = 2.3, and σe.z = 0.7. We begin by defining and listing the
vector of initial values.

. matrix ivalues = (.5, .2, .7, .7, .2, 2.3, .7)

. matrix list ivalues

ivalues[1,7]
c1 c2 c3 c4 c5 c6 c7

r1 .5 .2 .7 .7 .2 2.3 .7

Although we could specify and use the column names of the vector to assign elements of the vector
to parameters, we use from’s suboption copy to make the assignment based on order of appearance
in the vector. Specifying from(, copy) implies that the first element in the vector specifies the initial
value for the first model parameter, the second element in the vector specifies the initial value for
the second model parameter, and so on.
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. dsge (p = {beta}*F.p + {kappa}*y)
> (y = F.y - (r - F.p - z), unobserved)
> (r = (1/{beta})*p + u)
> (F.u = {rho_u}*u, state)
> (F.z = {rho_z1}*z + {rho_z2}*Lz, state)
> (F.Lz = z, state noshock), from(ivalues, copy)
(setting technique to bfgs)
Iteration 0: Log likelihood = -769.09431
Iteration 1: Log likelihood = -754.09564 (backed up)
Iteration 2: Log likelihood = -753.70352 (backed up)
Iteration 3: Log likelihood = -753.62091 (backed up)
Iteration 4: Log likelihood = -753.53446 (backed up)
(switching technique to nr)
Iteration 5: Log likelihood = -753.52617 (backed up)
Iteration 6: Log likelihood = -753.08907
Iteration 7: Log likelihood = -753.07789
Iteration 8: Log likelihood = -753.07788

DSGE model

Sample: 1955q1 thru 2015q4 Number of obs = 244
Log likelihood = -753.07788

Coefficient Std. err. z P>|z| [95% conf. interval]

/structural
beta .5154875 .0770492 6.69 0.000 .3644738 .6665012

kappa .1662423 .0468472 3.55 0.000 .0744236 .2580611
rho_u .6979879 .0452071 15.44 0.000 .6093836 .7865922

rho_z1 .6735481 .2665998 2.53 0.012 .1510221 1.196074
rho_z2 .2710003 .2564567 1.06 0.291 -.2316456 .7736461

sd(e.u) 2.315262 .2992169 1.728808 2.901716
sd(e.z) .7720669 .171621 .435696 1.108438

Example 3: Starting with a more constrained model to obtain convergence

Suppose that we wanted to estimate the parameters of the model in example 1 but that the only
good initial value was that theory predicted that β should be about 0.5. Further suppose that we were
having convergence problems fitting this model. In this case, one strategy would be to constrain β to
0.5 and to constrain κ to a small, nonzero value. The small value minimizes the interaction between p
and y. Making the value nonzero can prevent problems when solving for the state-space form of the
model. The remaining parameters determine the autoregressive processes for the states. Given that
we suspect that the second-order lag is part of the problem, we also constrain it to a small, nonzero
value. We try to estimate the remaining parameters in the output below.
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. constraint define 1 _b[beta] = 0.5

. constraint define 2 _b[kappa] = 0.1

. constraint define 3 _b[rho_z2] = 0.01

. dsge (p = {beta}*F.p + {kappa}*y)
> (y = F.y - (r - F.p - z), unobserved)
> (r = (1/{beta})*p + u)
> (F.u = {rho_u}*u, state)
> (F.z = {rho_z1}*z + {rho_z2}*Lz, state)
> (F.Lz = z, state noshock), constraints(1 2 3)
(setting technique to bfgs)
Iteration 0: Log likelihood = -22446.965
Iteration 1: Log likelihood = -2153.9862 (backed up)
Iteration 2: Log likelihood = -1257.6437 (backed up)
Iteration 3: Log likelihood = -1120.3354 (backed up)
Iteration 4: Log likelihood = -1098.8062 (backed up)
(switching technique to nr)
Iteration 5: Log likelihood = -1092.0433
Iteration 6: Log likelihood = -795.47417
Iteration 7: Log likelihood = -757.40637
Iteration 8: Log likelihood = -755.662
Iteration 9: Log likelihood = -755.63027
Iteration 10: Log likelihood = -755.63025

DSGE model

Sample: 1955q1 thru 2015q4 Number of obs = 244
Log likelihood = -755.63025
( 1) [/structural]beta = .5
( 2) [/structural]kappa = .1
( 3) [/structural]rho_z2 = .01

Coefficient Std. err. z P>|z| [95% conf. interval]

/structural
beta .5 (constrained)

kappa .1 (constrained)
rho_u .7906612 .0102382 77.23 0.000 .7705947 .8107277

rho_z1 .9440872 .0188166 50.17 0.000 .9072073 .980967
rho_z2 .01 (constrained)

sd(e.u) 2.391372 .1083319 2.179045 2.603698
sd(e.z) .6970129 .0731968 .5535498 .840476

The estimator converged. We will want to use these estimates as initial values, so we put them
into the matrix b and list b to confirm it has the desired values.

. matrix b = e(b)

. matrix list b

b[1,7]
/structural: /structural: /structural: /structural: /structural:

beta kappa rho_u rho_z1 rho_z2
y1 .5 .1 .79066118 .94408716 .01

/: /:
sd(e.u) sd(e.z)

y1 2.3913715 .69701292



6 Intro 7 — Convergence problems

We use the previous estimates as initial values, drop the constraints, and try to estimate all the
parameters.

. dsge (p = {beta}*F.p + {kappa}*y)
> (y = F.y - (r - F.p - z), unobserved)
> (r = (1/{beta})*p + u)
> (F.u = {rho_u}*u, state)
> (F.z = {rho_z1}*z + {rho_z2}*Lz, state)
> (F.Lz = z, state noshock), from(b, copy)
(setting technique to bfgs)
Iteration 0: Log likelihood = -755.63025
Iteration 1: Log likelihood = -755.57974 (backed up)
Iteration 2: Log likelihood = -755.1865 (backed up)
Iteration 3: Log likelihood = -754.62381 (backed up)
Iteration 4: Log likelihood = -754.5529 (backed up)
(switching technique to nr)
Iteration 5: Log likelihood = -754.45439 (backed up)
Iteration 6: Log likelihood = -753.40634
Iteration 7: Log likelihood = -753.09883
Iteration 8: Log likelihood = -753.07802
Iteration 9: Log likelihood = -753.07788
Iteration 10: Log likelihood = -753.07788

DSGE model

Sample: 1955q1 thru 2015q4 Number of obs = 244
Log likelihood = -753.07788

Coefficient Std. err. z P>|z| [95% conf. interval]

/structural
beta .5154873 .07705 6.69 0.000 .3644721 .6665024

kappa .1662425 .0468474 3.55 0.000 .0744232 .2580617
rho_u .6979879 .0452071 15.44 0.000 .6093835 .7865922

rho_z1 .6735472 .2666187 2.53 0.012 .1509841 1.19611
rho_z2 .2710012 .2564748 1.06 0.291 -.2316803 .7736826

sd(e.u) 2.315264 .2992199 1.728803 2.901724
sd(e.z) .7720676 .1716278 .4356832 1.108452

The estimator converged.

In larger problems, more steps are sometimes required. In these steps, you use the previous
estimates as initial values, but you drop only some of the constraints at each step.

Also see
[DSGE] Intro 5 — Stability conditions

[DSGE] Intro 6 — Identification
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