
Title stata.com

merge — Merge datasets

Description Quick start Menu Syntax
Options Remarks and examples References Also see

Description
merge joins corresponding observations from the dataset currently in memory (called the master

dataset) with those from filename.dta (called the using dataset), matching on one or more key
variables. merge can perform match merges (one-to-one, one-to-many, many-to-one, and many-to-
many), which are often called joins by database people. merge can also perform sequential merges,
which have no equivalent in the relational database world.

merge is for adding new variables from a second dataset to existing observations. You use
merge, for instance, when combining hospital patient and discharge datasets. If you wish to add new
observations to existing variables, then see [D] append. You use append, for instance, when adding
current discharges to past discharges.

To link datasets in separate frames, you can use the frlink and fralias add commands.
Linking and merging solve similar problems, and each is better than the other in some ways. You
may prefer linking, for instance, when dealing with an individual-level dataset and a county-level
dataset. Linking also works well when you have nested linkages such as linking a county dataset, a
school-within-county dataset, and a student-within-school dataset or when you need to link a dataset
to itself. See [D] frlink and [D] fralias for more information and examples.

By default, merge creates a new variable, merge, containing numeric codes concerning the source
and the contents of each observation in the merged dataset. These codes are explained below in the
match results table.

Key variables cannot be strLs.

If filename is specified without an extension, then .dta is assumed.

Quick start
One-to-one merge of mydata1.dta in memory with mydata2.dta on v1

merge 1:1 v1 using mydata2

Same as above, and also treat v2 as a key variable and name the new variable indicating the merge
result for each observation newv

merge 1:1 v1 v2 using mydata2, generate(newv)

Same as above, but keep only v3 from mydata2.dta and use default merge result variable merge

merge 1:1 v1 v2 using mydata2, keepusing(v3)

Same as above, but keep only observations in both datasets
merge 1:1 v1 v2 using mydata2, keepusing(v3) keep(match)

Same as above
merge 1:1 v1 v2 using mydata2, keepusing(v3) keep(3)

1

http://stata.com
https://www.stata.com/manuals/u11.pdf#u11.6Filenamingconventions
https://www.stata.com/manuals/dappend.pdf#dappend
https://www.stata.com/manuals/dfrlink.pdf#dfrlink
https://www.stata.com/manuals/dfralias.pdf#dfralias
https://www.stata.com/manuals/dfrlink.pdf#dfrlink
https://www.stata.com/manuals/dfralias.pdf#dfralias
https://www.stata.com/manuals/ddatatypes.pdf#dDatatypes

2 merge — Merge datasets

Same as above, but assert that all observations should match or return an error otherwise
merge 1:1 v1 v2 using mydata2, keepusing(v3) assert(3)

Replace missing data in mydata1.dta with values from mydata2.dta

merge 1:1 v1 v2 using mydata2, update

Replace missing and conflicting data in mydata1.dta with values from mydata2.dta

merge 1:1 v1 v2 using mydata2, update replace

Many-to-one merge on v1 and v2

merge m:1 v1 v2 using mydata2

One-to-many merge on v1 and v2

merge 1:m v1 v2 using mydata2

Menu
Data > Combine datasets > Merge two datasets

merge — Merge datasets 3

Syntax
One-to-one merge on specified key variables

merge 1:1 varlist using filename
[
, options

]
Many-to-one merge on specified key variables

merge m:1 varlist using filename
[
, options

]
One-to-many merge on specified key variables

merge 1:m varlist using filename
[
, options

]
Many-to-many merge on specified key variables

merge m:m varlist using filename
[
, options

]
One-to-one merge by observation

merge 1:1 n using filename
[
, options

]
options Description

Options

keepusing(varlist) variables to keep from using data; default is all
generate(newvar) name of new variable to mark merge results; default is merge

nogenerate do not create merge variable
nolabel do not copy value-label definitions from using
nonotes do not copy notes from using
update update missing values of same-named variables in master with values

from using
replace replace all values of same-named variables in master with nonmissing

values from using (requires update)
noreport do not display match result summary table
force allow string/numeric variable type mismatch without error

Results

assert(results) specify required match results
keep(results) specify which match results to keep

sorted do not sort; dataset already sorted

sorted does not appear in the dialog box.

Options

� � �
Options �

keepusing(varlist) specifies the variables from the using dataset that are kept in the merged dataset.
By default, all variables are kept. For example, if your using dataset contains 2,000 demographic
characteristics but you want only sex and age, then type merge . . . , keepusing(sex age)

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.6Filenamingconventions
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.6Filenamingconventions
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.6Filenamingconventions
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.6Filenamingconventions
https://www.stata.com/manuals/u11.pdf#u11.6Filenamingconventions
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists

4 merge — Merge datasets

generate(newvar) specifies that the variable containing match results information should be named
newvar rather than merge.

nogenerate specifies that merge not be created. This would be useful if you also specified
keep(match), because keep(match) ensures that all values of merge would be 3.

nolabel specifies that value-label definitions from the using file be ignored. This option should be
rare, because definitions from the master are already used.

nonotes specifies that notes in the using dataset not be added to the merged dataset; see [D] notes.

update and replace both perform an update merge rather than a standard merge. In a standard
merge, the data in the master are the authority and inviolable. For example, if the master and
using datasets both contain a variable age, then matched observations will contain values from the
master dataset, while unmatched observations will contain values from their respective datasets.

If update is specified, then matched observations will update missing values from the master dataset
with values from the using dataset. Nonmissing values in the master dataset will be unchanged.

If replace is specified, then matched observations will contain values from the using dataset,
unless the value in the using dataset is missing.

Specifying either update or replace affects the meanings of the match codes. See Treatment of
overlapping variables for details.

noreport specifies that merge not present its summary table of match results.

force allows string/numeric variable type mismatches, resulting in missing values from the using
dataset. If omitted, merge issues an error; if specified, merge issues a warning.

� � �
Results �

assert(results) specifies the required match results. The possible results are

Numeric Equivalent
code word (results) Description

1 master observation appeared in master only
2 using observation appeared in using only
3 match observation appeared in both

4 match update observation appeared in both, missing values updated
5 match conflict observation appeared in both, conflicting nonmissing

values
Codes 4 and 5 can arise only if the update option is specified. If codes of both

4 and 5 could pertain to an observation, then 5 is used.

Numeric codes and words are equivalent when used in the assert() or keep() options.

The following synonyms are allowed: masters for master, usings for using, matches
and matched for match, match updates for match update, and match conflicts for
match conflict.

Using assert(match master) specifies that the merged file is required to include only matched
master or using observations and unmatched master observations, and may not include unmatched
using observations. Specifying assert() results in merge issuing an error message if there are
match results you did not explicitly allow.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/dnotes.pdf#dnotes

merge — Merge datasets 5

The order of the words or codes is not important, so all the following assert() specifications
would be the same:

assert(match master)

assert(master matches)

assert(1 3)

When the match results contain codes other than those allowed, return code 9 is returned, and the
merged dataset with the unanticipated results is left in memory to allow you to investigate.

keep(results) specifies which observations are to be kept from the merged dataset. Using keep(match
master) specifies keeping only matched observations and unmatched master observations after
merging.

keep() differs from assert() because it selects observations from the merged dataset rather than
enforcing requirements. keep() is used to pare the merged dataset to a given set of observations
when you do not care if there are other observations in the merged dataset. assert() is used to
verify that only a given set of observations is in the merged dataset.

You can specify both assert() and keep(). If you require matched observations and unmatched
master observations but you want only the matched observations, then you could specify as-
sert(match master) keep(match).

assert() and keep() are convenience options whose functionality can be duplicated using
merge directly.

. merge . . . , assert(match master) keep(match)

is identical to

. merge . . .

. assert _merge==1 | _merge==3

. keep if _merge==3

The following option is available with merge but is not shown in the dialog box:

sorted specifies that the master and using datasets are already sorted by varlist. If the datasets are
already sorted, then merge runs a little more quickly; the difference is hardly detectable, so this
option is of interest only where speed is of the utmost importance.

Remarks and examples stata.com

Remarks are presented under the following headings:

Overview
Basic description
1:1 merges
m:1 merges
1:m merges
m:m merges
Sequential merges
Treatment of overlapping variables
Sort order
Troubleshooting m:m merges
Working with alias variables
Examples
Video example

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
http://stata.com

6 merge — Merge datasets

Overview

merge 1:1 varlist . . . specifies a one-to-one match merge. varlist specifies variables common to
both datasets that together uniquely identify single observations in both datasets. For instance, suppose
you have a dataset of customer information, called customer.dta, and have a second dataset of other
information about roughly the same customers, called other.dta. Suppose further that both datasets
identify individuals by using the pid variable, and there is only one observation per individual in
each dataset. You would merge the two datasets by typing

. use customer

. merge 1:1 pid using other

Reversing the roles of the two files would be fine. Choosing which dataset is the master and which
is the using matters only if there are overlapping variable names. 1:1 merges are less common than
1:m and m:1 merges.

merge 1:m and merge m:1 specify one-to-many and many-to-one match merges, respectively.
To illustrate the two choices, suppose you have a dataset containing information about individual
hospitals, called hospitals.dta. In this dataset, each observation contains information about one
hospital, which is uniquely identified by the hospitalid variable. You have a second dataset called
discharges.dta, which contains information on individual hospital stays by many different patients.
discharges.dta also identifies hospitals by using the hospitalid variable. You would like to join
all the information in both datasets. There are two ways you could do this.

merge 1:m varlist . . . specifies a one-to-many match merge.

. use hospitals

. merge 1:m hospitalid using discharges

would join the discharge data to the hospital data. This is a 1:m merge because hospitalid uniquely
identifies individual observations in the dataset in memory (hospitals), but could correspond to
many observations in the using dataset.

merge m:1 varlist . . . specifies a many-to-one match merge.

. use discharges

. merge m:1 hospitalid using hospitals

would join the hospital data to the discharge data. This is an m:1 merge because hospitalid can
correspond to many observations in the master dataset, but uniquely identifies individual observations
in the using dataset.

merge m:m varlist . . . specifies a many-to-many match merge. This is allowed for completeness,
but it is difficult to imagine an example of when it would be useful. For an m:m merge, varlist does not
uniquely identify the observations in either dataset. Matching is performed by combining observations
with equal values of varlist; within matching values, the first observation in the master dataset is
matched with the first matching observation in the using dataset; the second, with the second; and
so on. If there is an unequal number of observations within a group, then the last observation of the
shorter group is used repeatedly to match with subsequent observations of the longer group. Use of
merge m:m is not encouraged.

merge 1:1 n performs a sequential merge. n is not a variable name; it is Stata syntax for
observation number. A sequential merge performs a one-to-one merge on observation number. The
first observation of the master dataset is matched with the first observation of the using dataset; the
second, with the second; and so on. If there is an unequal number of observations, the remaining
observations are unmatched. Sequential merges are dangerous, because they require you to rely on
sort order to know that observations belong together. Use this merge at your own risk.

merge — Merge datasets 7

Basic description

Think of merge as being master + using = merged result.

Call the dataset in memory the master dataset, and the dataset on disk the using dataset. This way
we have general names that are not dependent on individual datasets.

Suppose we have two datasets,

master in memory on disk in file filename

id age id wgt

1 22 1 130
2 56 2 180
5 17 4 110

We would like to join together the age and weight information. We notice that the id variable
identifies unique observations in both datasets: if you tell me the id number, then I can tell you the
one observation that contains information about that id. This is true for both the master and the using
datasets.

Because id uniquely identifies observations in both datasets, this is a 1:1 merge. We can bring
in the dataset from disk by typing

. merge 1:1 id using filename

in memory in filename.dta
master + using = merged result

id age id wgt id age wgt

1 22 1 130 1 22 130 (matched)
2 56 2 180 2 56 180 (matched)
5 17 4 110 5 17 . (master only)

4 . 110 (using only)

The original data in memory are called the master data. The data in filename.dta are called
the using data. After merge, the merged result is left in memory. The id variable is called the key
variable. Stata jargon is that the datasets were merged on id.

Observations for id==1 existed in both the master and using datasets and so were combined in
the merged result. The same occurred for id==2. For id==5 and id==4, however, no matches were
found and thus each became a separate observation in the merged result. Thus each observation in
the merged result came from one of three possible sources:

Numeric Equivalent
code word Description

1 master originally appeared in master only
2 using originally appeared in using only
3 match originally appeared in both

8 merge — Merge datasets

merge encodes this information into new variable merge, which merge adds to the merged result:

in memory in filename.dta
master + using = merged result

id age id wgt id age wgt _merge

1 22 1 130 1 22 130 3
2 56 2 180 2 56 180 3
5 17 4 110 5 17 . 1

4 . 110 2

Note: Above we show the master and using data sorted by id before merging; this was for
illustrative purposes. The dataset resulting from a 1:1 merge will have the same data, regardless of
the sort order of the master and using datasets.

The formal definition for merge behavior is the following: Start with the first observation of the
master. Find the corresponding observation in the using data, if there is one. Record the matched or
unmatched result. Proceed to the next observation in the master dataset. When you finish working
through the master dataset, work through unused observations from the using data. By default,
unmatched observations are kept in the merged data, whether they come from the master dataset or
the using dataset.

Remember this formal definition. It will serve you well.

1:1 merges

The example shown above is called a 1:1 merge, because the key variable uniquely identified
each observation in each of the datasets.

A variable or variable list uniquely identifies the observations if each distinct value of the variable(s)
corresponds to one observation in the dataset.

In some datasets, multiple variables are required to identify the observations. Imagine data obtained
by observing patients at specific points in time so that variables pid and time, taken together, identify
the observations. Below we have two such datasets and run a 1:1 merge on pid and time,

. merge 1:1 pid time using filename

master + using = merged result

pid time x1 pid time x2 pid time x1 x2 _merge

14 1 0 14 1 7 14 1 0 7 3
14 2 0 14 2 9 14 2 0 9 3
14 4 0 16 1 2 14 4 0 . 1
16 1 1 16 2 3 16 1 1 2 3
16 2 1 17 1 5 16 2 1 3 3
17 1 0 17 2 2 17 1 0 5 3

17 2 . 2 2

This is a 1:1 merge because the combination of the values of pid and time uniquely identifies
observations in both datasets.

By default, there is nothing about a 1:1 merge that implies that all, or even any of, the observations
match. Above five observations matched, one observation was only in the master (subject 14 at time
4), and another was only in the using (subject 17 at time 2).

merge — Merge datasets 9

m:1 merges

In an m:1 merge, the key variable or variables uniquely identify the observations in the using data,
but not necessarily in the master data. Suppose you had person-level data within regions and you
wished to bring in regional data. Here is an example:

. merge m:1 region using filename
master + using = merged result

id region a region x id region a x _merge

1 2 26 1 15 1 2 26 13 3
2 1 29 2 13 2 1 29 15 3
3 2 22 3 12 3 2 22 13 3
4 3 21 4 11 4 3 21 12 3
5 1 24 5 1 24 15 3
6 5 20 6 5 20 . 1

. 4 . 11 2

To bring in the regional information, we need to merge on region. The values of region identify
individual observations in the using data, but it is not an identifier in the master data.

We show the merged dataset sorted by id because this makes it easier to see how the merged
dataset was constructed. For each observation in the master data, merge finds the corresponding
observation in the using data. merge combines the values of the variables in the using dataset to the
observations in the master dataset.

1:m merges

1:m merges are similar to m:1, except that now the key variables identify unique observations in
the master dataset. Any datasets that can be merged using an m:1 merge may be merged using a
1:m merge by reversing the roles of the master and using datasets. Here is the same example as used
previously, with the master and using datasets reversed:

. merge 1:m region using filename
master + using = merged result

region x id region a region x id a _merge

1 15 1 2 26 1 15 2 29 3
2 13 2 1 29 1 15 5 24 3
3 12 3 2 22 2 13 1 26 3
4 11 4 3 21 2 13 3 22 3

5 1 24 3 12 4 21 3
6 5 20 4 11 . . 1

5 . 6 20 2

This merged result is identical to the merged result in the previous section, except for the sort
order and the contents of merge. This time, we show the merged result sorted by region rather
than id. Reversing the roles of the files causes a reversal in the 1s and 2s for merge: where merge
was previously 1, it is now 2, and vice versa. These exchanged merge values reflect the reversed
roles of the master and using data.

For each observation in the master data, merge found the corresponding observation(s) in the
using data and then wrote down the matched or unmatched result. Once the master observations were
exhausted, merge wrote down any observations from the using data that were never used.

10 merge — Merge datasets

m:m merges

m:m specifies a many-to-many merge and is a bad idea. In an m:m merge, observations are matched
within equal values of the key variable(s), with the first observation being matched to the first; the
second, to the second; and so on. If the master and using have an unequal number of observations
within the group, then the last observation of the shorter group is used repeatedly to match with
subsequent observations of the longer group. Thus m:m merges are dependent on the current sort
order—something which should never happen.

Because m:m merges are such a bad idea, we are not going to show you an example. If you think
that you need an m:m merge, then you probably need to work with your data so that you can use a
1:m or m:1 merge. Tips for this are given in Troubleshooting m:m merges below.

Sequential merges

In a sequential merge, there are no key variables. Observations are matched solely on their
observation number:

. merge 1:1 _n using filename

master + using = merged result

x1 x2 x1 x2 _merge

10 7 10 7 3
30 2 30 2 3
20 1 20 1 3
5 9 5 9 3

3 . 3 2

In the example above, the using data are longer than the master, but that could be reversed. In
most cases where sequential merges are appropriate, the datasets are expected to be of equal length,
and you should type

. merge 1:1 _n using filename, assert(match) nogenerate

Sequential merges, like m:m merges, are dangerous. Both depend on the current sort order of the
data.

Treatment of overlapping variables

When performing merges of any type, the master and using datasets may have variables in common
other than the key variables. We will call such variables overlapping variables. For instance, if the
variables in the master and using datasets are

master: id, region, sex, age, race
using: id, sex, bp, race

and id is the key variable, then the overlapping variables are sex and race.

By default, merge treats values from the master as inviolable. When observations match, it is the
master’s values of the overlapping variables that are recorded in the merged result.

merge — Merge datasets 11

If you specify the update option, however, then all missing values of overlapping variables in
matched observations are replaced with values from the using data. Because of this new behavior,
the merge codes change somewhat. Codes 1 and 2 keep their old meaning. Code 3 splits into codes
3, 4, and 5. Codes 3, 4, and 5 are filtered according to the following rules; the first applicable rule
is used.

5 corresponds to matched observations where at least one overlapping variable had conflicting
nonmissing values.

4 corresponds to matched observations where at least one missing value was updated, but there
were no conflicting nonmissing values.

3 means observations matched, and there were neither updated missing values nor conflicting
nonmissing values.

If you specify both the update and replace options, then the merge==5 cases are updated with
values from the using data.

Sort order
As we have mentioned, in the 1:1, 1:m, and m:1 match merges, the sort orders of the master and

using datasets do not affect the data in the merged dataset. This is not the case of m:m, which we
recommend you never use.

Sorting is used by merge internally for efficiency, so the merged result can be produced most
quickly when the master and using datasets are already sorted by the key variable(s) before merging.
You are not required to have the dataset sorted before using merge, however, because merge will
sort behind the scenes, if necessary. If the using dataset is not sorted, then a temporary copy is made
and sorted to ensure that the current sort order on disk is not affected.

All of this is to reassure you that 1) your datasets on disk will not be modified by merge and
2) despite the fact that our discussion has ignored sort issues, merge is, in fact, efficient behind the
scenes.

It hardly makes any difference in run times, but if you know that the master and using data are
already sorted by the key variable(s), then you can specify the sorted option. All that will be saved
is the time merge would spend discovering that fact for itself.

The merged result produced by merge orders the variables and observations in a special and
sometimes useful way. If you think of datasets as tables, then the columns for the new variables
appear to the right of what was the master. If the master data originally had k variables, then the new
variables will be the (k + 1)st, (k + 2)nd, and so on. The new observations are similarly ordered so
that they all appear at the end of what was the master. If the master originally had N observations,
then the new observations, if any, are the (N + 1)st, (N + 2)nd, and so on. Thus the original master
data can be found from the merged result by extracting the first k variables and first N observations.
If merge with the update option was specified, however, then be aware that the extracted master
may have some updated values.

If you care about the ordering of observations in the data after a merge, then you should sort the
data after the merge. You should sort it in such a way that it has a unique ordering; see Sorting with
ties in [D] sort. If, against this recommendation, you wish to have a reproducible ordering after a
merge, then read the next paragraph. But be forewarned; just because something is reproducible does
not mean it is useful. Again, see Sorting with ties .

The resulting dataset after any merge is unsorted. That is to say, if you type describe, the “Sorted
by” result will be empty. That is not to say that the data will not be ordered; a dataset always has
an order. After 1:1 merges, the ordering will always be in the original order of the master dataset,

https://www.stata.com/manuals/dsort.pdf#dsortRemarksandexamplesSortingwithties
https://www.stata.com/manuals/dsort.pdf#dsortRemarksandexamplesSortingwithties
https://www.stata.com/manuals/dsort.pdf#dsort
https://www.stata.com/manuals/dsort.pdf#dsortRemarksandexamplesSortingwithties

12 merge — Merge datasets

with any additional observations from the using dataset at the bottom and in their order from the
using dataset. For all other merges, you will need to go to some effort to ensure a reproducible
ordering. For m:1, 1:m, and m:m merges, you must first sort the master and using datasets by the
merge keys and by other variables that will produce a unique ordering of the dataset. You may have
to create those other variables. (See Sorting with ties for obtaining a unique sort.) After m:1 merges,
the ordering will be the original ordering of the master data with any unmatched observations from
the using dataset appended to the bottom in their order from the using dataset. After 1:m and m:m
merges, the ordering is difficult to explain. Regardless, the ordering will be the same if you repeat
the merge after uniquely sorting each dataset—it is reproducible.

Troubleshooting m:m merges

First, if you think you need to perform an m:m merge, then we suspect you are wrong. If you
would like to match every observation in the master to every observation in the using with the same
values of the key variable(s), then you should be using joinby; see [D] joinby.

If you still want to use merge, then it is likely that you have forgotten one or more key variables that
could be used to identify observations within groups. Perhaps you have panel data with 4 observations
on each subject, and you are thinking that what you need to do is

. merge m:m subjectid using filename

Ask yourself if you have a variable that identifies observation within panel, such as a sequence
number or a time. If you have, say, a time variable, then you probably should try something like

. merge 1:m subjectid time using filename

(You might need a 1:1 or m:1 merge; 1:m was arbitrarily chosen for the example.)

If you do not have a time or time-like variable, then ask yourself if there is a meaning to matching
the first observations within subject, the second observations within subject, and so on. If so, then
there is a concept of sequence within subject.

Suppose you do indeed have a sequence concept, but in your dataset it is recorded via the ordering
of the observations. Here you are in a dangerous situation because any kind of sorting would lose
the identity of the first, second, and nth observation within subject. Your first goal should be to fix
this problem by creating an explicit sequence variable from the current ordering—your merge can
come later.

Start with your master data. Type

. sort subjectid, stable

. by subjectid: generate seqnum = _n

Do not omit sort’s stable option. That is what will keep the observations in the same order
within subject. Save the data. Perform these same three steps on your using data.

After fixing the datasets, you can now type

. merge 1:m subjectid seqnum using filename

If you do not think there is a meaning to being the first, second, and nth observation within subject,
then you need to ask yourself what it means to match the first observations within subjectid, the
second observations within subjectid, and so on. Would it make equal sense to match the first with
the third, the second with the fourth, or any other haphazard matching? If so, then there is no real
ordering, so there is no real meaning to merging. You are about to obtain a haphazard result; you
need to rethink your merge.

https://www.stata.com/manuals/dsort.pdf#dsortRemarksandexamplesSortingwithties
https://www.stata.com/manuals/djoinby.pdf#djoinby
https://www.stata.com/manuals/dsort.pdf#dsort

merge — Merge datasets 13

Working with alias variables

merge allows alias variables in the master and using datasets, with the following restrictions. An
alias variable with a broken linkage will cause merge to exit with an informative error message; see
[D] fralias for examples.

If a key variable in the master dataset is an alias, then it must be an alias with the same linkage
in the using dataset; otherwise, you get something like the following error message:

variable keyvar is alias in master data but float in using data
Key variables (on which observations are matched) may be type alias,
but their alias characteristics must match between the master and
using datasets for the merged data to be correct and complete. When
alias characteristics do not match, or when a master key variable is
alias but the using key variable is not, you could use command
frunalias to recast the key variables in the master data
to avoid this error message.

r(106);

If an overlapping variable in the master dataset is an alias, then it must be an alias with the same
linkage in the using dataset; otherwise, you get something like the following error message:

variable ovar is alias in master data but float in using data
You could use command frunalias to recast ovar in the master data to avoid
this error message.

r(106);

Examples

Example 1: A 1:1 merge

We have two datasets, one of which has information about the size of old automobiles and the
other of which has information about their expense:

. use https://www.stata-press.com/data/r18/autosize
(1978 automobile data)

. list

make weight length

1. Toyota Celica 2,410 174
2. BMW 320i 2,650 177
3. Cad. Seville 4,290 204
4. Pont. Grand Prix 3,210 201
5. Datsun 210 2,020 165

6. Plym. Arrow 3,260 170

. use https://www.stata-press.com/data/r18/autoexpense
(1978 automobile data)

. list

make price mpg

1. Toyota Celica 5,899 18
2. BMW 320i 9,735 25
3. Cad. Seville 15,906 21
4. Pont. Grand Prix 5,222 19
5. Datsun 210 4,589 35

https://www.stata.com/manuals/dfralias.pdf#dfralias

14 merge — Merge datasets

We can see that these datasets contain different information about nearly the same cars—the autosize
file has one more car. We would like to get all the information about all the cars into one dataset.

Because we are adding new variables to old variables, this is a job for the merge command. We
need only to decide what type of match merge we need.

Looking carefully at the datasets, we see that the make variable, which identifies the cars in each
of the two datasets, also identifies individual observations within the datasets. What this means is
that if you tell me the make of car, I can tell you the one observation that corresponds to that car.
Because this is true for both datasets, we should use a 1:1 merge.

We will start with a clean slate to show the full process:

. use https://www.stata-press.com/data/r18/autosize
(1978 automobile data)

. merge 1:1 make using https://www.stata-press.com/data/r18/autoexpense

Result Number of obs

Not matched 1
from master 1 (_merge==1)
from using 0 (_merge==2)

Matched 5 (_merge==3)

. list

make weight length price mpg _merge

1. BMW 320i 2,650 177 9,735 25 Matched (3)
2. Cad. Seville 4,290 204 15,906 21 Matched (3)
3. Datsun 210 2,020 165 4,589 35 Matched (3)
4. Plym. Arrow 3,260 170 . . Master only (1)
5. Pont. Grand Prix 3,210 201 5,222 19 Matched (3)

6. Toyota Celica 2,410 174 5,899 18 Matched (3)

The merge is successful—all the data are present in the combined dataset, even that from the one car
that has only size information. If we wanted only those makes for which all information is present,
it would be up to us to drop the observations for which merge < 3.

Example 2: Requiring matches

Suppose we had the same setup as in the previous example, but we erroneously think that we have
all the information on all the cars. We could tell merge that we expect only matches by using the
assert option.

. use https://www.stata-press.com/data/r18/autosize, clear
(1978 automobile data)

. merge 1:1 make using https://www.stata-press.com/data/r18/autoexpense,
> assert(match)
merge: after merge, not all observations matched

(merged result left in memory)
r(9);

https://www.stata.com/manuals/perror.pdf#perrorRemarksandexamplesr(9)

merge — Merge datasets 15

merge tells us that there is a problem with our assumption. To see how many mismatches there
were, we can tabulate merge:

. tabulate _merge

_merge Freq. Percent Cum.

master only (1) 1 16.67 16.67
matched (3) 5 83.33 100.00

Total 6 100.00

If we would like to list the problem observation, we can type

. list if _merge < 3

make weight length price mpg _merge

4. Plym. Arrow 3,260 170 . . master only (1)

If we were convinced that all data should be complete in the two datasets, we would have to
rectify the mismatch in the original datasets.

Example 3: Keeping just the matches

Once again, suppose that we had the same datasets as before, but this time we want the final
dataset to have only those observations for which there is a match. We do not care if there are
mismatches—all that is important are the complete observations. By using the keep(match) option,
we will guarantee that this happens. Because we are keeping only those observations for which the
key variable matches, there is no need to generate the merge variable. We could do the following:

. use https://www.stata-press.com/data/r18/autosize, clear
(1978 automobile data)

. merge 1:1 make using https://www.stata-press.com/data/r18/autoexpense,
> keep(match) nogenerate

Result Number of obs

Not matched 0
Matched 5

. list

make weight length price mpg

1. BMW 320i 2,650 177 9,735 25
2. Cad. Seville 4,290 204 15,906 21
3. Datsun 210 2,020 165 4,589 35
4. Pont. Grand Prix 3,210 201 5,222 19
5. Toyota Celica 2,410 174 5,899 18

16 merge — Merge datasets

Example 4: Many-to-one matches

We have two datasets: one has salespeople in regions and the other has regional data about sales.
We would like to put all the information into one dataset. Here are the datasets:

. use https://www.stata-press.com/data/r18/sforce, clear
(Sales Force)

. list

region name

1. N Cntrl Krantz
2. N Cntrl Phipps
3. N Cntrl Willis
4. NE Ecklund
5. NE Franks

6. South Anderson
7. South Dubnoff
8. South Lee
9. South McNeil

10. West Charles

11. West Cobb
12. West Grant

. use https://www.stata-press.com/data/r18/dollars
(Regional Sales & Costs)

. list

region sales cost

1. N Cntrl 419,472 227,677
2. NE 360,523 138,097
3. South 532,399 330,499
4. West 310,565 165,348

We can see that the region would be used to match observations in the two datasets, and this time
we see that region identifies individual observations in the dollars dataset but not in the sforce
dataset. This means we will have to use either an m:1 or a 1:m merge. Here we will open the sforce
dataset and then merge the dollars dataset. This will be an m:1 merge, because region does not
identify individual observations in the dataset in memory but does identify them in the using dataset.
Here is the command and its result:

. use https://www.stata-press.com/data/r18/sforce
(Sales Force)

. merge m:1 region using https://www.stata-press.com/data/r18/dollars
(label region already defined)

Result Number of obs

Not matched 0
Matched 12 (_merge==3)

merge — Merge datasets 17

. list

region name sales cost _merge

1. N Cntrl Krantz 419,472 227,677 Matched (3)
2. N Cntrl Phipps 419,472 227,677 Matched (3)
3. N Cntrl Willis 419,472 227,677 Matched (3)
4. NE Ecklund 360,523 138,097 Matched (3)
5. NE Franks 360,523 138,097 Matched (3)

6. South Anderson 532,399 330,499 Matched (3)
7. South Dubnoff 532,399 330,499 Matched (3)
8. South Lee 532,399 330,499 Matched (3)
9. South McNeil 532,399 330,499 Matched (3)

10. West Charles 310,565 165,348 Matched (3)

11. West Cobb 310,565 165,348 Matched (3)
12. West Grant 310,565 165,348 Matched (3)

We can see from the result that all the values of region were matched in both datasets. This is a
rare occurrence in practice!

Had we had the dollars dataset in memory and merged in the sforce dataset, we would have
done a 1:m merge.

We would now like to use a series of examples that shows how merge treats nonkey variables,
which have the same names in the two datasets. We will call these “overlapping” variables.

Example 5: Overlapping variables

Here are two datasets whose only purpose is for this illustration:

. use https://www.stata-press.com/data/r18/overlap1, clear

. list, sepby(id)

id seq x1 x2

1. 1 1 1 1
2. 1 2 1 .
3. 1 3 1 2
4. 1 4 . 2

5. 2 1 . 1
6. 2 2 . 2
7. 2 3 1 1
8. 2 4 1 2
9. 2 5 .a 1

10. 2 6 .a 2

11. 3 1 . .a
12. 3 2 . 1
13. 3 3 . .
14. 3 4 .a .a

15. 10 1 5 8

. use https://www.stata-press.com/data/r18/overlap2

18 merge — Merge datasets

. list

id bar x1 x2

1. 1 11 1 1
2. 2 12 . 1
3. 3 14 . .a
4. 20 18 1 1

We can see that id can be used as the key variable for putting the two datasets together. We can also
see that there are two overlapping variables: x1 and x2.

We will start with a simple m:1 merge:

. use https://www.stata-press.com/data/r18/overlap1

. merge m:1 id using https://www.stata-press.com/data/r18/overlap2

Result Number of obs

Not matched 2
from master 1 (_merge==1)
from using 1 (_merge==2)

Matched 14 (_merge==3)

. list, sepby(id)

id seq x1 x2 bar _merge

1. 1 1 1 1 11 Matched (3)
2. 1 2 1 . 11 Matched (3)
3. 1 3 1 2 11 Matched (3)
4. 1 4 . 2 11 Matched (3)

5. 2 1 . 1 12 Matched (3)
6. 2 2 . 2 12 Matched (3)
7. 2 3 1 1 12 Matched (3)
8. 2 4 1 2 12 Matched (3)
9. 2 5 .a 1 12 Matched (3)

10. 2 6 .a 2 12 Matched (3)

11. 3 1 . .a 14 Matched (3)
12. 3 2 . 1 14 Matched (3)
13. 3 3 . . 14 Matched (3)
14. 3 4 .a .a 14 Matched (3)

15. 10 1 5 8 . Master only (1)

16. 20 . 1 1 18 Using only (2)

Careful inspection shows that for the matched id, the values of x1 and x2 are still the values that
were originally in the overlap1 dataset. This is the default behavior of merge—the data in the
master dataset are the authority and are kept intact.

merge — Merge datasets 19

Example 6: Updating missing data

Now we would like to investigate the update option. Used by itself, it will replace missing values
in the master dataset with values from the using dataset:

. use https://www.stata-press.com/data/r18/overlap1, clear

. merge m:1 id using https://www.stata-press.com/data/r18/overlap2, update

Result Number of obs

Not matched 2
from master 1 (_merge==1)
from using 1 (_merge==2)

Matched 14
not updated 5 (_merge==3)
missing updated 4 (_merge==4)
nonmissing conflict 5 (_merge==5)

. list, sepby(id)

id seq x1 x2 bar _merge

1. 1 1 1 1 11 Matched (3)
2. 1 2 1 1 11 Missing updated (4)
3. 1 3 1 2 11 Nonmissing conflict (5)
4. 1 4 1 2 11 Nonmissing conflict (5)

5. 2 1 . 1 12 Matched (3)
6. 2 2 . 2 12 Nonmissing conflict (5)
7. 2 3 1 1 12 Matched (3)
8. 2 4 1 2 12 Nonmissing conflict (5)
9. 2 5 . 1 12 Missing updated (4)

10. 2 6 . 2 12 Nonmissing conflict (5)

11. 3 1 . .a 14 Matched (3)
12. 3 2 . 1 14 Matched (3)
13. 3 3 . .a 14 Missing updated (4)
14. 3 4 . .a 14 Missing updated (4)

15. 10 1 5 8 . Master only (1)

16. 20 . 1 1 18 Using only (2)

Looking through the resulting dataset observation by observation, we can see both what the update
option updated as well as how the merge variable gets its values.

The following is a listing that shows what is happening, where x1 m and x2 m come from the
master dataset (overlap1), x1 u and x2 u come from the using dataset (overlap2), and x1 and
x2 are the values that appear when using merge with the update option.

20 merge — Merge datasets

id x1_m x1_u x1 x2_m x2_u x2 _merge

1. 1 1 1 1 1 1 1 matched (3)
2. 1 1 1 1 . 1 1 missing updated (4)
3. 1 1 1 1 2 1 2 nonmissing conflict (5)
4. 1 . 1 1 2 1 2 nonmissing conflict (5)

5. 2 . . . 1 1 1 matched (3)
6. 2 . . . 2 1 2 nonmissing conflict (5)
7. 2 1 . 1 1 1 1 matched (3)
8. 2 1 . 1 2 1 2 nonmissing conflict (5)
9. 2 .a . . 1 1 1 missing updated (4)

10. 2 .a . . 2 1 2 nonmissing conflict (5)

11. 3a .a .a matched (3)
12. 3 . . . 1 .a 1 matched (3)
13. 3a .a missing updated (4)
14. 3 .a . . .a .a .a missing updated (4)

15. 10 5 . 5 8 . 8 master only (1)

16. 20 . 1 1 . 1 1 using only (2)

From this, we can see two important facts: if there are both a conflict and an updated value, the
value of merge will reflect that there was a conflict, and missing values in the master dataset are
updated by missing values in the using dataset.

Example 7: Updating all common observations

We would like to see what happens if the update and replace options are specified. The replace
option extends the action of update to use nonmissing values of the using dataset to replace values
in the master dataset. The values of merge are unaffected by using both update and replace.

. use https://www.stata-press.com/data/r18/overlap1, clear

. merge m:1 id using https://www.stata-press.com/data/r18/overlap2, update replace

Result Number of obs

Not matched 2
from master 1 (_merge==1)
from using 1 (_merge==2)

Matched 14
not updated 5 (_merge==3)
missing updated 4 (_merge==4)
nonmissing conflict 5 (_merge==5)

merge — Merge datasets 21

. list, sepby(id)

id seq x1 x2 bar _merge

1. 1 1 1 1 11 Matched (3)
2. 1 2 1 1 11 Missing updated (4)
3. 1 3 1 1 11 Nonmissing conflict (5)
4. 1 4 1 1 11 Nonmissing conflict (5)

5. 2 1 . 1 12 Matched (3)
6. 2 2 . 1 12 Nonmissing conflict (5)
7. 2 3 1 1 12 Matched (3)
8. 2 4 1 1 12 Nonmissing conflict (5)
9. 2 5 . 1 12 Missing updated (4)

10. 2 6 . 1 12 Nonmissing conflict (5)

11. 3 1 . .a 14 Matched (3)
12. 3 2 . 1 14 Matched (3)
13. 3 3 . .a 14 Missing updated (4)
14. 3 4 . .a 14 Missing updated (4)

15. 10 1 5 8 . Master only (1)

16. 20 . 1 1 18 Using only (2)

Example 8: More on the keep() option

Suppose we would like to use the update option, as we did above, but we would like to keep only
those observations for which the value of the key variable, id, was found in both datasets. This will
be more complicated than in our earlier example, because the update option splits the matches into
matches, match updates, and match conflicts. We must either use all of these code words in
the keep option or use their numerical equivalents, 3, 4, and 5. Here the latter is simpler.

. use https://www.stata-press.com/data/r18/overlap1, clear

. merge m:1 id using https://www.stata-press.com/data/r18/overlap2, update
> keep(3 4 5)

Result Number of obs

Not matched 0

Matched 14
not updated 5 (_merge==3)
missing updated 4 (_merge==4)
nonmissing conflict 5 (_merge==5)

22 merge — Merge datasets

. list, sepby(id)

id seq x1 x2 bar _merge

1. 1 1 1 1 11 Matched (3)
2. 1 2 1 1 11 Missing updated (4)
3. 1 3 1 2 11 Nonmissing conflict (5)
4. 1 4 1 2 11 Nonmissing conflict (5)

5. 2 1 . 1 12 Matched (3)
6. 2 2 . 2 12 Nonmissing conflict (5)
7. 2 3 1 1 12 Matched (3)
8. 2 4 1 2 12 Nonmissing conflict (5)
9. 2 5 . 1 12 Missing updated (4)

10. 2 6 . 2 12 Nonmissing conflict (5)

11. 3 1 . .a 14 Matched (3)
12. 3 2 . 1 14 Matched (3)
13. 3 3 . .a 14 Missing updated (4)
14. 3 4 . .a 14 Missing updated (4)

Example 9: A one-to-many merge

As a final example, we would like show one example of a 1:m merge. There is nothing conceptually
different here; what is interesting is the order of the observations in the final dataset:

. use https://www.stata-press.com/data/r18/overlap2, clear

. merge 1:m id using https://www.stata-press.com/data/r18/overlap1

Result Number of obs

Not matched 2
from master 1 (_merge==1)
from using 1 (_merge==2)

Matched 14 (_merge==3)

merge — Merge datasets 23

. list, sepby(id)

id bar x1 x2 seq _merge

1. 1 11 1 1 1 Matched (3)

2. 2 12 . 1 1 Matched (3)

3. 3 14 . .a 1 Matched (3)

4. 20 18 1 1 . Master only (1)

5. 1 11 1 1 2 Matched (3)
6. 1 11 1 1 3 Matched (3)
7. 1 11 1 1 4 Matched (3)

8. 2 12 . 1 2 Matched (3)
9. 2 12 . 1 3 Matched (3)

10. 2 12 . 1 4 Matched (3)
11. 2 12 . 1 5 Matched (3)
12. 2 12 . 1 6 Matched (3)

13. 3 14 . .a 2 Matched (3)
14. 3 14 . .a 3 Matched (3)
15. 3 14 . .a 4 Matched (3)

16. 10 . 5 8 1 Using only (2)

We can see here that the first four observations come from the master dataset, and all additional
observations, whether matched or unmatched, come below these observations. This illustrates that the
master dataset is always in the upper-left corner of the merged dataset.

Video example

How to merge files into a single dataset

References
Canette, I. 2014. Using resampling methods to detect influential points. The Stata Blog: Not Elsewhere Classified.

http://blog.stata.com/2014/05/08/using-resampling-methods-to-detect-influential-points/.

Chatfield, M. D. 2015. precombine: A command to examine n>=2 datasets before combining. Stata Journal 15:
607–626.

Golbe, D. L. 2010. Stata tip 83: Merging multilingual datasets. Stata Journal 10: 152–156.

Gould, W. W. 2011a. Merging data, part 1: Merges gone bad. The Stata Blog: Not Elsewhere Classified.
http://blog.stata.com/2011/04/18/merging-data-part-1-merges-gone-bad/.

. 2011b. Merging data, part 2: Multiple-key merges. The Stata Blog: Not Elsewhere Classified.
http://blog.stata.com/2011/05/27/merging-data-part-2-multiple-key-merges/.

Mazrekaj, D., and J. Wursten. 2021. Stata tip 142: joinby is the real merge m:m. Stata Journal 21: 1065–1068.

Wasi, N., and A. Flaaen. 2015. Record linkage using Stata: Preprocessing, linking, and reviewing utilities. Stata
Journal 15: 672–697.

https://www.youtube.com/watch?v=niGZBRyyDuY
http://blog.stata.com/2014/05/08/using-resampling-methods-to-detect-influential-points/
http://blog.stata.com/2014/05/08/using-resampling-methods-to-detect-influential-points/
http://www.stata-journal.com/article.html?article=dm0081
http://www.stata-journal.com/article.html?article=dm0046
http://blog.stata.com/2011/04/18/merging-data-part-1-merges-gone-bad/
http://blog.stata.com/2011/04/18/merging-data-part-1-merges-gone-bad/
http://blog.stata.com/2011/05/27/merging-data-part-2-multiple-key-merges/
http://blog.stata.com/2011/05/27/merging-data-part-2-multiple-key-merges/
https://doi.org/10.1177/1536867X211063416
http://www.stata-journal.com/article.html?article=dm0082

24 merge — Merge datasets

Also see
[D] append — Append datasets

[D] cross — Form every pairwise combination of two datasets

[D] fralias — Alias variables from linked frames

[D] frget — Copy variables from linked frame

[D] frlink — Link frames

[D] frunalias — Change storage type of alias variables

[D] joinby — Form all pairwise combinations within groups

[D] save — Save Stata dataset

[U] 23 Combining datasets

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and
Stata Press are registered trademarks with the World Intellectual Property Organization
of the United Nations. StataNow and NetCourseNow are trademarks of StataCorp
LLC. Other brand and product names are registered trademarks or trademarks of their
respective companies. Copyright c© 1985–2023 StataCorp LLC, College Station, TX,
USA. All rights reserved.

®

For suggested citations, see the FAQ on citing Stata documentation.

https://www.stata.com/manuals/dappend.pdf#dappend
https://www.stata.com/manuals/dcross.pdf#dcross
https://www.stata.com/manuals/dfralias.pdf#dfralias
https://www.stata.com/manuals/dfrget.pdf#dfrget
https://www.stata.com/manuals/dfrlink.pdf#dfrlink
https://www.stata.com/manuals/dfrunalias.pdf#dfrunalias
https://www.stata.com/manuals/djoinby.pdf#djoinby
https://www.stata.com/manuals/dsave.pdf#dsave
https://www.stata.com/manuals/u23.pdf#u23Combiningdatasets
https://www.stata.com/support/faqs/resources/citing-software-documentation-faqs/

