
Title stata.com

dyngen — Dynamically generate new values of variables

Description Menu Syntax Option Remarks and examples
Also see

Description

dyngen replaces the value of variables when two or more variables depend on each other’s
lagged values. Use dyngen when the values for the whole set of variables must be computed for an
observation before moving to the next observation.

Menu
Data > Create or change data > Dynamically generate new values

Syntax
dyngen {

update varname1 = exp
[

if
] [

, missval(#)
]

...

update varnameN = exp
[

if
] [

, missval(#)
]

}
[

if
] [

in
]

varnamen, n=1,...,N , must already exist in the dataset and cannot be an alias variable; see [D] frunalias.
exp must be a valid expression and may include time-series operators; see [U] 11.4.4 Time-series varlists.

Option
missval(#) specifies the value to use in place of missing values when performing calculations. This

option is particularly useful when referring to lags that exist prior to the data.

Remarks and examples stata.com

Like replace, dyngen modifies the contents of existing variables. However, dyngen works
observation by observation. If you are doing a computation only on a single variable that relies only
on its own lagged values or those of other variables, you do not need dyngen because generate
and replace work their way through the data sequentially. Use dyngen when you need to modify
two or more variables at the same time.

1

http://stata.com
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u13.pdf#u13Functionsandexpressions
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u13.pdf#u13Functionsandexpressions
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/dfrunalias.pdf#dfrunalias
https://www.stata.com/manuals/u11.pdf#u11.4.4Time-seriesvarlists
http://stata.com
https://www.stata.com/manuals/dgenerate.pdf#dgenerate


2 dyngen — Dynamically generate new values of variables

The examples in this entry use the following data:

. input time x1 x2

time x1 x2
1. 1 3 1
2. 2 4 4
3. 3 5 2
4. 4 5 1
5. 5 2 1
6. end

Example 1: Using dyngen

We want to update our values of x1 and x2 such that x1 depends on its current value and the
previous value of x2, and x2 depends on previous values of x1 and x2. We will be using these same
values of x1 and x2 in subsequent examples, so we do not want to overwrite their values. We create
a copy of each in the variables d1 and d2, where the d prefix is used to remind us that these variables
contain dynamically updated values.

. generate d1=x1

. generate d2=x2

Because we are using previous values, we need to specify a value for dyngen to substitute in
place of missings; in this case, we use the means.

. summarize d1 d2

Variable Obs Mean Std. dev. Min Max

d1 5 3.8 1.30384 2 5
d2 5 1.8 1.30384 1 4

Within the dyngen command, we specify an update statement for d1 and d2. We also use observation
subscripts to indicate the previous values as needed; see [U] 13.7 Explicit subscripting. With time-
series data, we could also use time-series operators; see example 3 for an illustration.

. dyngen {

. update d1 = .4*d1 + .1*d2[_n-1], missval(3.8)

. update d2 = .2*d1[_n-1] + .3*d2[_n-1], missval(1.8)

. }

. list x1 x2 d*

x1 x2 d1 d2

1. 3 1 3.8 1.8
2. 4 4 1.78 1.3
3. 5 2 2.13 .746
4. 5 1 2.0746 .6498
5. 2 1 .86498 .60986

In observation 1, dyngen has substituted 3.8 for d1 and 1.8 for d2, values that would otherwise
be missing because there are no data preceding the first observation. In observation 2, the updated
value of d1 is 0.4 × 4 + 0.1 × 1.8 = 1.78 and that of d2 is 0.2 × 3.8 + 0.3 × 1.8 = 1.3, and so on.

https://www.stata.com/manuals/u13.pdf#u13.7Explicitsubscripting


dyngen — Dynamically generate new values of variables 3

Example 2: Distinction between dyngen and replace

We can compare the results from example 1 with those from replace to see how dyngen operates
differently.

As in example 1, we create two new variables, r1 and r2, that will hold values we update using
replace. There is no automatic way to handle missing values with replace, so we need to set the
first values to the means “by hand” to avoid missing values later. We then have a replace command
for each variable, restricted to observations 2 through 5.

. generate r1=x1

. generate r2=x2

. replace r1 = 3.8 in 1
(1 real change made)

. replace r2 = 1.8 in 1
(1 real change made)

. replace r1 = .4*r1 + .1*r2[_n-1] in 2/5
(4 real changes made)

. replace r2 = .2*r1[_n-1] + .3*r2[_n-1] in 2/5
(4 real changes made)

Now, we can compare the results side by side.
. list x* d* r*

x1 x2 d1 d2 r1 r2

1. 3 1 3.8 1.8 3.8 1.8
2. 4 4 1.78 1.3 1.78 1.3
3. 5 2 2.13 .746 2.4 .746
4. 5 1 2.0746 .6498 2.2 .7038
5. 2 1 .86498 .60986 .9 .65114

For the first two observations, the inputs are exactly the same, so there is no difference in the outcome.
We see differences starting in the third row.

At the time that replace is updating the value of r1 in observation 3, it is making the calculation

0.4× 5 + 0.1× 4 = 2.4

because the value of r2 is still 4, the original value of x2. Compare this with the results of dyngen,
which uses

0.4× 5 + 0.1× 1.3 = 2.13

That is, the key distinction is dyngen has fully updated observation 2 before moving on to observation 3.
replace will make a full pass through r1 before moving on to r2.

Example 3: Processing if conditions

Each update statement within the dyngen command can take an if condition. To illustrate, we
replace d1 and d2 with the original values of x1 and x2 and update them again, this time restricting
the updated observations to just those observations where time ≥ 3.

. replace d1=x1
(5 real changes made)

. replace d2=x2
(5 real changes made)

https://www.stata.com/manuals/dgenerate.pdf#dgenerate


4 dyngen — Dynamically generate new values of variables

Here, we tsset the data and use the lag operator instead of subscripting observations, but that is
not required.

. tsset time

Time variable: time, 1 to 5
Delta: 1 unit

. dyngen {

. update d1 = .4*d1 + .1*L.d2 if time>=3

. update d2 = .2*L.d1 + .3*L.d2 if time>=3

. }

. list x* d*

x1 x2 d1 d2

1. 3 1 3 1
2. 4 4 4 4
3. 5 2 2.4 2
4. 5 1 2.2 1.08
5. 2 1 .908 .764

When the same if condition is specified on all update statements, the results are equivalent to
specifying one if condition on the entire dyngen block. We used the same if statement on both
update statements above, so typing the following produces the same results as the code above.

dyngen {
update d1 = .4*d1 + .1*L.d2
update d2 = .2*L.d1 + .3*L.d2

} if time>=3

You may also specify an in qualifier with the dyngen command. If you specify an if or in
qualifier, dyngen loops over the observations that meet the if condition or in range but will reference
values outside that range if needed.

Also see
[D] frunalias — Change storage type of alias variables

[D] generate — Create or change contents of variable

[U] 12 Data
[U] 13 Functions and expressions

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and
Stata Press are registered trademarks with the World Intellectual Property Organization
of the United Nations. StataNow and NetCourseNow are trademarks of StataCorp
LLC. Other brand and product names are registered trademarks or trademarks of their
respective companies. Copyright c© 1985–2023 StataCorp LLC, College Station, TX,
USA. All rights reserved.

®

For suggested citations, see the FAQ on citing Stata documentation.

https://www.stata.com/manuals/tstsset.pdf#tstsset
https://www.stata.com/manuals/dfrunalias.pdf#dfrunalias
https://www.stata.com/manuals/dgenerate.pdf#dgenerate
https://www.stata.com/manuals/u12.pdf#u12Data
https://www.stata.com/manuals/u13.pdf#u13Functionsandexpressions
https://www.stata.com/support/faqs/resources/citing-software-documentation-faqs/

