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Description
This introduction covers the commands cmclogit, cmmixlogit, cmmprobit, and nlogit. These

estimation commands fit discrete choice models, that is, models in which each decision maker chooses
a single alternative from a finite set of available alternatives.

Remarks and examples stata.com

Remarks are presented under the following headings:

Overview of CM commands for discrete choices
cmclogit: McFadden’s choice model
Looking at cases with missing values using cmsample
margins after CM estimation
cmmixlogit: Mixed logit choice models
cmmprobit: Multinomial probit choice models
nlogit: Nested logit choice models
Relationships with other estimation commands

Duplicating cmclogit using clogit
Multinomial logistic regression and McFadden’s choice model

Estimation considerations
Setting the number of integration points
Convergence
More than one chosen alternative

Overview of CM commands for discrete choices

Stata has four commands designed for fitting discrete choice models. Here we give you a brief
overview of the similarities and differences in the models fit by these commands.

Each of these commands allows both alternative-specific and case-specific predictors, and each
one handles unbalanced choice sets properly. Each of these models can be derived as a random
utility model in which each decision maker selects the alternative that provides the highest utility.
See [CM] Intro 8 for more information on the random utility model formulation of these discrete
choice models.

The difference in these models largely hinges on an assumption known as independence of irrelevant
alternatives (IIA). Briefly, the IIA assumption means that relative probability of selecting alternatives
should not change if we introduce or eliminate another alternative. As an example, suppose that a
restaurant has one chicken entree and one steak entree on the menu and that these are equally likely
to be selected. If a vegetarian option is introduced, the probabilities of selecting chicken and steak
will both decrease, but they should still be equal to each other if the IIA assumption holds. If the
probability of selecting steak now is greater than the probability of selecting chicken, or vice versa,
the IIA assumption does not hold. More technically, the IIA assumption means that the error terms
cannot be correlated across alternatives. See [CM] Intro 8 for more information on this assumption
and how it applies to each choice model.
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cmclogit fits McFadden’s choice model using conditional logistic regression. Of the four models
discussed in this entry, McFadden’s choice model has the most straightforward formulation. However,
it does require that you make the IIA assumption.

cmmixlogit fits a mixed logit regression for choice models. This model allows random coefficients
on one or more of the alternative-specific predictors in the model. This means that the coefficients on
these variables are allowed to vary across individuals. We do not estimate the coefficients for each
individual. Instead, we assume that the coefficients follow a distribution such as normal distribution,
and we estimate the parameters of that distribution. Through these random coefficients, the model
allows correlation across alternatives. In this way, the mixed logit model relaxes the IIA assumption.

cmmprobit fits a multinomial probit choice model. Like cmclogit, this command estimates fixed
coefficients for all predictors, but it relaxes the IIA assumption in another way. It directly models the
correlation between the error terms for the different alternatives.

nlogit fits a nested logit choice model. With this model, similar alternatives—alternatives whose
errors are likely to be correlated—can be grouped into nests. Extending our restaurant example, suppose
there are now seven entrees. Three include chicken, two include steak, and two are vegetarian. The
researcher could specify a nesting structure where entrees are grouped by type. The nested logit model
then accounts for correlation of alternatives within the same nest and thus relaxes the IIA assumption.

Below, we provide further introductions to these models, demonstrate how to fit and interpret
them using Stata, and tell you more about their relationships with each other and with other Stata
estimation commands.

cmclogit: McFadden’s choice model

McFadden’s choice model is fit using conditional logistic regression. In Stata, this model can also
be fit by the command clogit. In fact, cmclogit calls clogit to fit McFadden’s choice model.
However, cmclogit is designed for choice data and has features that clogit does not. cmclogit
properly handles missing values for choice models, checks for errors in the alternatives variable and
case-specific variables, and has appropriate postestimation commands such as the special version of
margins designed for use after CM estimation.

To demonstrate cmclogit, we use the same dataset we used in [CM] Intro 2. We load the data,
list the first three cases, and use cmset.

https://www.stata.com/manuals/rclogit.pdf#rclogit
https://www.stata.com/manuals/cmmargins.pdf#cmmargins
https://www.stata.com/manuals/cmintro2.pdf#cmIntro2
https://www.stata.com/manuals/cmcmset.pdf#cmcmset
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. use https://www.stata-press.com/data/r18/carchoice
(Car choice data)

. list consumerid car purchase gender income dealers if consumerid <= 3,
> sepby(consumerid) abbrev(10)

consumerid car purchase gender income dealers

1. 1 American 1 Male 46.7 9
2. 1 Japanese 0 Male 46.7 11
3. 1 European 0 Male 46.7 5
4. 1 Korean 0 Male 46.7 1

5. 2 American 1 Male 26.1 10
6. 2 Japanese 0 Male 26.1 7
7. 2 European 0 Male 26.1 2
8. 2 Korean 0 Male 26.1 1

9. 3 American 0 Male 32.7 8
10. 3 Japanese 1 Male 32.7 6
11. 3 European 0 Male 32.7 2

. cmset consumerid car
note: alternatives are unbalanced across choice sets; choice sets of

different sizes found.

Case ID variable: consumerid
Alternatives variable: car

We passed cmset the case ID variable consumerid and the alternatives variable car, which contains
possible choices of the nationality of car purchased, American, Japanese, European, or Korean.

The 0/1 variable purchase indicates which nationality of car was purchased. It is our dependent
variable for cmclogit. Before we fit our model, let’s run cmtab to see the observed choices in the
data.

. cmtab, choice(purchase)

Tabulation of chosen alternatives (purchase = 1)

Nationality
of car Freq. Percent Cum.

American 384 43.39 43.39
Japanese 326 36.84 80.23
European 135 15.25 95.48

Korean 40 4.52 100.00

Total 885 100.00

Most of the people in these data purchased American cars (43%), followed by Japanese cars (37%)
and European cars (15%). Korean cars were purchased the least (5%).
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For predictors, we have the case-specific variables gender and income, and the alternative-specific
variable dealers, which contains the number of dealerships of each nationality in the consumer’s
community. We fit the model:

. cmclogit purchase dealers, casevars(i.gender income)

Iteration 0: Log likelihood = -959.21405
Iteration 1: Log likelihood = -948.48587
Iteration 2: Log likelihood = -948.1217
Iteration 3: Log likelihood = -948.12096
Iteration 4: Log likelihood = -948.12096

Conditional logit choice model Number of obs = 3,075
Case ID variable: consumerid Number of cases = 862

Alternatives variable: car Alts per case: min = 3
avg = 3.6
max = 4

Wald chi2(7) = 51.03
Log likelihood = -948.12096 Prob > chi2 = 0.0000

purchase Coefficient Std. err. z P>|z| [95% conf. interval]

car
dealers .0448082 .0262818 1.70 0.088 -.0067032 .0963196

American (base alternative)

Japanese
gender
Male -.379326 .1712399 -2.22 0.027 -.71495 -.0437021

income .0154978 .0065145 2.38 0.017 .0027296 .0282659
_cons -.4787261 .331378 -1.44 0.149 -1.128215 .1707628

European
gender
Male .653345 .2647694 2.47 0.014 .1344065 1.172283

income .0343647 .0080286 4.28 0.000 .0186289 .0501006
_cons -2.839606 .461613 -6.15 0.000 -3.744351 -1.934861

Korean
gender
Male .0679233 .4464535 0.15 0.879 -.8071094 .942956

income -.0377716 .0158434 -2.38 0.017 -.068824 -.0067191
_cons .0511728 .8033048 0.06 0.949 -1.523276 1.625621

Note that alternative-specific variables (if any) follow the dependent variable. Case-specific variables
(if any) are placed in the option casevars(). Because cmclogit requires us to specify which variables
are alternative specific and which are case specific, it can verify that our data are coded as we expect.
It checks whether the specified case-specific variables are truly case specific. If they are not, we get
an error.

You may also see messages from cmclogit about the alternative-specific variables. For example,

note: variable dealers has 2 cases that are not alternative-specific; there is
no within-case variability.

Alternative-specific variables can vary by alternative and by case, but they do not have to vary by
alternative for every case. This message tells us that there are two cases for which the alternative-
specific variable is constant within case. If an alternative-specific variable is constant within case for
a large proportion of the cases, we might question how alternative specific that variable really is and
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be concerned about its predictive value. If a variable that is supposed to be alternative specific is in
fact case specific, we will get an error.

Looking at the results from cmclogit, we first see that the coefficient on dealers is positive;
based on this model, we expect the probability of purchasing a vehicle of any nationality to increase
as the number of dealerships increases. However, notice that this coefficient is different from 0 at the
10% level but not at the 5% level.

American cars are chosen as the base alternative, so coefficients on the alternative-specific variables
are interpreted relative to them. For instance, for the Japanese alternative, the coefficient on Male is
negative, which indicates that males are less likely to select a Japanese car than an American car.

Looking at cases with missing values using cmsample

From the header of the cmclogit output, we see that our model was fit using 862 cases in our
model. However, we see from the previous cmtab output that there are a total of 885 cases in the
data. There must be missing values in one or more of the variables. Let’s track down the variables and
the cases with missing values using cmsample. First, we run cmsample specifying all the variables
we used with cmclogit. The only difference is that the dependent variable goes in the choice()
option.

. cmsample dealers, choice(purchase) casevars(i.gender income)

Reason for exclusion Freq. Percent Cum.

observations included 3,075 97.31 97.31
casevars missing 85 2.69 100.00

Total 3,160 100.00

The results tell us that the missing values are in the casevars, either gender or income or both.
Note that the tabulation produced by cmsample shows counts of observations not cases.

Second, we look at gender alone with cmsample:
. cmsample, casevars(i.gender) generate(flag)

Reason for exclusion Freq. Percent Cum.

observations included 3,075 97.31 97.31
casevar missing 85 2.69 100.00

Total 3,160 100.00

These are the cases with missing values. We also specified the generate() option to create a variable
whose nonzero values indicate cases with missing values or other problems. We list these cases:

. sort consumerid car

. list consumerid car gender flag if flag != 0, sepby(consumerid) abbr(10)

consumerid car gender flag

509. 142 American . casevar missing
510. 142 Japanese Male casevar missing
511. 142 European Male casevar missing
512. 142 Korean Male casevar missing

516. 144 American . casevar missing
517. 144 Japanese Male casevar missing
518. 144 European Male casevar missing

(output omitted )

https://www.stata.com/manuals/cmcmsample.pdf#cmcmsample
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We could have listed the observations with missing values of gender by typing list
if missing(gender). But using cmsample in this way allows us to list entire cases, potentially
giving us a way to fix the problem. In this example, we could decide all the nonmissing values of
gender are valid and fill in the missing values with the nonmissing ones for that case. However, we
will not do this for the purpose of our example.

See [CM] cmsample and example 3 in [CM] cmclogit for more on missing values in choice data.

margins after CM estimation

Above, we interpreted a few of the coefficients from the clogit results. In [CM] Intro 1, we
showed you that you can use margins to further interpret the results of your choice model. Here
we demonstrate how we can apply some of margins special choice model features to interpret the
results of this model.

First, we type margins without any arguments to get the average predicted probabilities for the
different alternatives.

. margins

Predictive margins Number of obs = 3,075
Model VCE: OIM

Expression: Pr(car|1 selected), predict()

Delta-method
Margin std. err. z P>|z| [95% conf. interval]

_outcome
American .4361949 .016755 26.03 0.000 .4033556 .4690342
Japanese .3665893 .0162405 22.57 0.000 .3347585 .3984202
European .1508121 .0119794 12.59 0.000 .1273328 .1742913

Korean .0464037 .0069301 6.70 0.000 .032821 .0599865

Based on this model and assuming we have a random or otherwise representative sample, these
are the expected proportions in the population.

margins can produce many types of estimates. Suppose we want to know how the probability of
a person selecting a European car changes when the number of European dealerships increases. If
this probability increases (as we expect it to), the increase must come at the expense of American,
Japanese, or Korean cars. Which one of these is affected the most?

First, let’s estimate the expected probability of purchasing each nationality of car if each community
adds a new European dealership. We can use the at(dealers=(dealers+1) option to request this
computation.

https://www.stata.com/manuals/cmcmsample.pdf#cmcmsample
https://www.stata.com/manuals/cmcmclogit.pdf#cmcmclogitRemarksandexamplesex3_cmclogit
https://www.stata.com/manuals/cmcmclogit.pdf#cmcmclogit
https://www.stata.com/manuals/cmintro1.pdf#cmIntro1
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. margins, at(dealers=generate(dealers+1)) alternative(European)

Predictive margins Number of obs = 3,075
Model VCE: OIM

Expression: Pr(car|1 selected), predict()
Alternative: European
At: dealers = dealers+1

Delta-method
Margin std. err. z P>|z| [95% conf. interval]

_outcome
American .4333003 .0168164 25.77 0.000 .4003407 .4662598
Japanese .3641274 .0162604 22.39 0.000 .3322577 .3959971
European .1564365 .0127751 12.25 0.000 .1313978 .1814752

Korean .0461358 .0068959 6.69 0.000 .0326201 .0596516

These look similar to the expected probabilities we estimated using the original number of dealerships
in each community. By using the contrast() option, we can estimate the differences between these
probabilities and the original ones. We include the nowald option to simplify the output.

. margins, at(dealers=generate(dealers)) at(dealers=generate(dealers+1))
> alternative(European) contrast(atcontrast(r) nowald)

Contrasts of predictive margins Number of obs = 3,075
Model VCE: OIM

Expression: Pr(car|1 selected), predict()
Alternative: European

1._at: dealers = dealers

2._at: dealers = dealers+1

Delta-method
Contrast std. err. [95% conf. interval]

_at@_outcome
(2 vs 1) American -.0028946 .0017268 -.0062791 .0004899
(2 vs 1) Japanese -.0024619 .0014701 -.0053434 .0004195
(2 vs 1) European .0056244 .0033521 -.0009456 .0121944

(2 vs 1) Korean -.0002679 .0001686 -.0005983 .0000625

Increasing the number of European dealerships by one increases the expected probability of selecting
a European car by 0.0056. This increase comes at the expense of American cars slightly more than
Japanese cars. The probability of someone purchasing an American car decreases by 0.0029, and the
probability of someone purchasing a Japanese car decreases by 0.0025. The probability of buying a
Korean car is barely changed, only a tiny decrease of 0.0003 in the probability. All of these changes
are very small. We can look at the 95% confidence intervals to see that none of these changes in
probabilities is significantly different from 0 at the 5% level.

We will ignore the lack of significance for now and explore one of margins’s features specific
to choice models. As we mentioned before, the choice sets are unbalanced. Some consumers do not
have the choice of a Korean car (corresponding to car == 4) as one of their available alternatives.
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. cmchoiceset

Tabulation of choice-set possibilities

Choice set Freq. Percent Cum.

1 2 3 380 42.94 42.94
1 2 3 4 505 57.06 100.00

Total 885 100.00

Note: Total is number of cases.

How does margins handle the fact that some persons do not have the choice of Korean cars
among their alternatives? By default, margins sets the probability of buying a Korean car for these
consumers to zero and keeps it fixed at zero.

If we want to look at only those consumers who have Korean in their choice set, we can use the
outcome( . . . , altsubpop) option.

. margins, at(dealers=generate(dealers)) at(dealers=generate(dealers+1))
> alternative(European) contrast(atcontrast(r) nowald) outcome(Korean, altsubpop)

Contrasts of predictive margins Number of obs = 3,075
Model VCE: OIM

Expression: Pr(car|1 selected), predict()
Alternative: European
Outcome: Korean

1._at: dealers = dealers

2._at: dealers = dealers+1

Delta-method
Contrast std. err. [95% conf. interval]

_at
(2 vs 1) -.0004722 .0002972 -.0010547 .0001103

The probability of buying a Korean car among those who have the choice of buying a Korean decreases
by 0.0005 when a European dealership is added. This change is bigger than what we estimated earlier,
as we expect, because we omitted all those persons whose change was fixed at zero.

When we model these data, it seems reasonable to keep the probability of buying a Korean car
fixed at zero for those consumers who do not have Korean in their choice set. The result gives a
picture of the total population represented by the sample; to omit them gives a picture of only those
communities with Korean dealerships. See [CM] margins for more examples and another discussion
of this issue.

If you have not already read [CM] Intro 1, we recommend that you also read the examples
of interpreting results of cm commands using margins that are provided in that entry. For more
information on margins, see its main entry in the Stata manuals, [R] margins. You will also want
to see the separate entry for it in this manual, [CM] margins, which describes the special features of
this command when used after cm commands and includes lots of choice model examples.

https://www.stata.com/manuals/cmmargins.pdf#cmmargins
https://www.stata.com/manuals/cmintro1.pdf#cmIntro1
https://www.stata.com/manuals/rmargins.pdf#rmargins
https://www.stata.com/manuals/cmmargins.pdf#cmmargins
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cmmixlogit: Mixed logit choice models

cmmixlogit fits a mixed logit regression for choice data. Like cmclogit, cmmixlogit is used to
model the probability that a decision maker chooses one alternative from a set of available alternatives.

In the mixed logit model, the coefficients on alternative-specific variables can be treated as
fixed or random. Specifying random coefficients can model correlation of choices across alternatives,
thereby relaxing the IIA property that is imposed by McFadden’s choice model. In this sense, the
mixed logit model fit by cmmixlogit is more general than models fit by cmclogit. McFadden and
Train (2000) show that the mixed logit model can approximate a wide class of choice representations.
See [CM] Intro 8 for a description of the IIA property and how mixed logit models can fit deviations
from it.

We continue with the same dataset we have been using in this introduction: consumer data on
choices of nationalities of cars. The data arrangement required by cmmixlogit is exactly the same
as that for cmclogit.

Mixed logit choice models can fit random coefficients for alternative-specific variables. We take
dealers, the number of dealers of each nationality in each consumer’s community, which is an
alternative-specific variable, and fit random coefficients for it.

https://www.stata.com/manuals/cmcmmixlogit.pdf#cmcmmixlogit
https://www.stata.com/manuals/cmcmclogit.pdf#cmcmclogit
https://www.stata.com/manuals/cmintro8.pdf#cmIntro8
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. cmmixlogit purchase, random(dealers) casevars(i.gender income)
note: alternatives are unbalanced.

Fitting fixed parameter model:

Fitting full model:

Iteration 0: Log simulated-likelihood = -966.81349
Iteration 1: Log simulated-likelihood = -949.54388
Iteration 2: Log simulated-likelihood = -948.15757
Iteration 3: Log simulated-likelihood = -948.12546
Iteration 4: Log simulated-likelihood = -948.12106
Iteration 5: Log simulated-likelihood = -948.12099
Iteration 6: Log simulated-likelihood = -948.12097
Iteration 7: Log simulated-likelihood = -948.12096

Mixed logit choice model Number of obs = 3,075
Case ID variable: consumerid Number of cases = 862

Alternatives variable: car Alts per case: min = 3
avg = 3.6
max = 4

Integration sequence: Hammersley
Integration points: 623 Wald chi2(7) = 51.03
Log simulated-likelihood = -948.12096 Prob > chi2 = 0.0000

purchase Coefficient Std. err. z P>|z| [95% conf. interval]

car
dealers .0448203 .0262821 1.71 0.088 -.0066917 .0963323

/Normal
sd(dealers) .0001994 .1981032 . .

American (base alternative)

Japanese
gender
Male -.3793276 .1712401 -2.22 0.027 -.714952 -.0437032

income .015498 .0065144 2.38 0.017 .00273 .0282661
_cons -.4786729 .3313762 -1.44 0.149 -1.128158 .1708125

European
gender
Male .6533193 .2647746 2.47 0.014 .1343706 1.172268

income .0343656 .0080288 4.28 0.000 .0186295 .0501017
_cons -2.839604 .4616206 -6.15 0.000 -3.744363 -1.934844

Korean
gender
Male .0676844 .4464111 0.15 0.879 -.8072653 .9426341

income -.0377614 .0158428 -2.38 0.017 -.0688128 -.00671
_cons .0511088 .8032683 0.06 0.949 -1.523268 1.625486

LR test vs. fixed parameters: chibar2(01) = 0.00 Prob >= chibar2 = 0.5000

The estimated standard deviation for the random coefficient is small, and the likelihood-ratio test
shown at the bottom of the table that compares this random-coefficients model with a fixed-coefficient
model is not significant. A model with random coefficients for dealers is no better than one with a
fixed coefficient. Note that this fixed-coefficient model is precisely the model fit earlier by cmclogit.

We used the default distribution for the random coefficients: a normal (Gaussian) distribution.
Let’s fit the model again using a lognormal distribution for the coefficient of dealers.
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Because the lognormal distribution is only defined over positive real values, the coefficient values
coming from this distribution will only be positive. This constrains the coefficient to be positive. Is
this constraint okay? We believe that increasing the number of dealerships in a community of a given
nationality should always increase the probability that someone in the community buys that type of
car and never decrease the probability. So constraining the coefficient to be positive is what we want.
(If we want to constrain the coefficient to be negative, we could create a variable equal to -dealers
and fit a random lognormal coefficient for it.)

. cmmixlogit purchase, random(dealers, lognormal) casevars(i.gender income)
note: alternatives are unbalanced.

Fitting fixed parameter model:

Fitting full model:

Iteration 0: Log simulated-likelihood = -948.13062
Iteration 1: Log simulated-likelihood = -948.1226
Iteration 2: Log simulated-likelihood = -948.12155
Iteration 3: Log simulated-likelihood = -948.12106
Iteration 4: Log simulated-likelihood = -948.12096
Iteration 5: Log simulated-likelihood = -948.12096

Mixed logit choice model Number of obs = 3,075
Case ID variable: consumerid Number of cases = 862

Alternatives variable: car Alts per case: min = 3
avg = 3.6
max = 4

Integration sequence: Hammersley
Integration points: 623 Wald chi2(7) = 79.14
Log simulated-likelihood = -948.12096 Prob > chi2 = 0.0000

purchase Coefficient Std. err. z P>|z| [95% conf. interval]

car
dealers -3.105499 .5869861 -5.29 0.000 -4.255971 -1.955028

/Lognormal
sd(dealers) .0036636 4.480108 . .

American (base alternative)

Japanese
gender
Male -.3793272 .1712406 -2.22 0.027 -.7149526 -.0437018

income .0154978 .0065145 2.38 0.017 .0027296 .0282661
_cons -.4787181 .3313811 -1.44 0.149 -1.128213 .170777

European
gender
Male .6533465 .2647669 2.47 0.014 .1344129 1.17228

income .0343648 .0080286 4.28 0.000 .0186291 .0501005
_cons -2.83959 .4616219 -6.15 0.000 -3.744353 -1.934828

Korean
gender
Male .0679287 .4464459 0.15 0.879 -.8070892 .9429466

income -.0377715 .0158431 -2.38 0.017 -.0688234 -.0067196
_cons .0511891 .8033007 0.06 0.949 -1.523251 1.62563

LR test vs. fixed parameters: chibar2(01) = 0.00 Prob >= chibar2 = 0.5000

The random-coefficients model is still not significantly different from a fixed coefficient model.
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At first glance, the requirement of including random coefficients on alternative-specific variables in
this model may seem limiting. What if we do not have alternative-specific variables for which random
coefficients are appropriate? Note that the constants in the model are alternative specific. They are
automatically included in the model for us, but we could have equivalently typed i.car in the list of
alternative-specific variables to include indicators for the alternatives. We can turn any of or all the
constants into random intercepts. Let’s do this with the constant for the European alternative. Now
we need to use the factor-variable specification for the alternative-specific constants. Because we want
fixed coefficients on Japanese and Korean indicators, we type i(2 4).car in the fixed portion of the
model. To get random coefficients for the European constant, we type random(i3.car). We also
specify the options noconstant and collinear (or else cmmixlogit would drop the constants).

. cmmixlogit purchase dealers i(2 4).car, random(i3.car)
> casevars(i.gender income) noconstant collinear
note: alternatives are unbalanced.

Fitting fixed parameter model:

Fitting full model:

Iteration 0: Log simulated-likelihood = -1717.8292 (not concave)
Iteration 1: Log simulated-likelihood = -1471.6665 (not concave)
Iteration 2: Log simulated-likelihood = -1456.0693 (not concave)
Iteration 3: Log simulated-likelihood = -1431.4506 (not concave)
Iteration 4: Log simulated-likelihood = -1412.2678 (not concave)
Iteration 5: Log simulated-likelihood = -1382.4808 (not concave)
Iteration 6: Log simulated-likelihood = -1359.4781 (not concave)
Iteration 7: Log simulated-likelihood = -1341.5917 (not concave)
Iteration 8: Log simulated-likelihood = -1327.6059 (not concave)
Iteration 9: Log simulated-likelihood = -1316.6209 (not concave)
Iteration 10: Log simulated-likelihood = -1307.9616 (not concave)
Iteration 11: Log simulated-likelihood = -1294.3419 (not concave)
Iteration 12: Log simulated-likelihood = -1155.848 (not concave)
Iteration 13: Log simulated-likelihood = -998.89495
Iteration 14: Log simulated-likelihood = -950.28922
Iteration 15: Log simulated-likelihood = -949.17489
Iteration 16: Log simulated-likelihood = -949.17151
Iteration 17: Log simulated-likelihood = -949.16844
Iteration 18: Log simulated-likelihood = -949.16776
Iteration 19: Log simulated-likelihood = -949.16759
Iteration 20: Log simulated-likelihood = -949.16755
Iteration 21: Log simulated-likelihood = -949.16754
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Mixed logit choice model Number of obs = 3,075
Case ID variable: consumerid Number of cases = 862

Alternatives variable: car Alts per case: min = 3
avg = 3.6
max = 4

Integration sequence: Hammersley
Integration points: 623 Wald chi2(9) = 200.60
Log simulated-likelihood = -949.16754 Prob > chi2 = 0.0000

purchase Coefficient Std. err. z P>|z| [95% conf. interval]

car
dealers .0502172 .0259823 1.93 0.053 -.0007071 .1011415

car
Korean .2926751 .7850917 0.37 0.709 -1.246076 1.831427

European -2.591301 .4270812 -6.07 0.000 -3.428365 -1.754237

/Normal
sd(3.car) .0001367 1.640459 . .

American (base alternative)

Japanese
gender
Male -.5113203 .1448827 -3.53 0.000 -.7952852 -.2273554

income .007125 .0029512 2.41 0.016 .0013408 .0129093

European
gender
Male .5843488 .2610755 2.24 0.025 .0726502 1.096047

income .0304615 .0075051 4.06 0.000 .0157518 .0451712

Korean
gender
Male .0012654 .444595 0.00 0.998 -.8701249 .8726556

income -.0413199 .0156261 -2.64 0.008 -.0719464 -.0106934

LR test vs. fixed parameters: chibar2(01) = 0.00 Prob >= chibar2 = 0.5000

This model with a random intercept for the European alternative is not significantly different from a
fixed-coefficient model. But this illustrates one of the features of cmmixlogit. Making the alternative-
specific constants random allows us to fit models that do not satisfy IIA and test them against a
fixed-coefficient model that does satisfy IIA.

See [CM] cmmixlogit for examples where the random-coefficients model fits better than the one
with fixed coefficients. There we demonstrate how to further interpret results of these models. In
addition, you can use margins in the same ways shown in [CM] Intro 1 and as we did after cmclogit
above to interpret mixed logit models.

cmmprobit: Multinomial probit choice models

cmmprobit fits a multinomial probit (MNP) choice model. The formulation of the utility for MNP
is described in [CM] Intro 8. The model is similar to McFadden’s choice model (cmclogit), except
that the random-error term is modeled using a multivariate normal distribution, and you can explicitly
model the covariance.

https://www.stata.com/manuals/cmcmmixlogit.pdf#cmcmmixlogit
https://www.stata.com/manuals/cmintro1.pdf#cmIntro1
https://www.stata.com/manuals/cmintro8.pdf#cmIntro8
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When there are no alternative-specific variables in your model, covariance parameters are not
identifiable. In this case, better alternatives are mprobit, which is geared specifically toward models
with only case-specific variables, or a random-intercept model fit by cmmixlogit.

The covariance parameters are set using the correlation() and stddev() options of cmmprobit.
In general, there are J(J + 1)/2 possible covariance parameters, where J is the number of possible
alternatives. One of the alternatives is set as the base category, and only the relative differences among
the utilities matter. This reduces the possible number of covariance parameters by J .

The scale of the utilities does not matter. Multiply the utilities for all alternatives by the same
constant, and the relative differences are unchanged. This further reduces the number of covariance
parameters by one. So there are a total of J(J − 1)/2 − 1 covariance parameters you can fit. But
you do not have to fit all of them. You can set some of them to fixed values, either zero or nonzero.
Or you can constrain some of them to be equal.

When J is large, it is a good idea to initially fit just a few parameters and then gradually increase
the number. If you try to fit a lot of parameters, your model may have a hard time converging
because some of the parameters may not be identified. For example, the true variance for one of the
alternatives may be zero, and if you try to estimate the standard deviation for the alternative, the
model may not converge because zero is not part of the estimable parameter space.

See Covariance structures in [CM] cmmprobit for full details on all the choices for specifying the
covariance parameters.

cmmprobit has some options for reducing the number of covariance parameters. In particular,
correlation(exchangeable) fits a model in which correlations between the alternatives are all
the same. Another way to reduce the number of parameters estimated is the factor(#) option.
cmmprobit with factor(#) fits a covariance matrix of the form I+C′C, where the row dimension
of the matrix C is #.

Let’s fit a model using factor(1) with the data from the previous examples.

. cmmprobit purchase dealers, casevars(i.gender income) factor(1)

Iteration 0: Log simulated-likelihood = -949.38598
Iteration 1: Log simulated-likelihood = -949.08161 (backed up)
Iteration 2: Log simulated-likelihood = -948.87143 (backed up)
Iteration 3: Log simulated-likelihood = -948.84362 (backed up)
Iteration 4: Log simulated-likelihood = -948.83433 (backed up)
Iteration 5: Log simulated-likelihood = -948.53624 (backed up)
Iteration 6: Log simulated-likelihood = -948.52521
Iteration 7: Log simulated-likelihood = -948.42813
Iteration 8: Log simulated-likelihood = -948.14286
Iteration 9: Log simulated-likelihood = -948.03466
Iteration 10: Log simulated-likelihood = -948.01302
Iteration 11: Log simulated-likelihood = -947.83629
Iteration 12: Log simulated-likelihood = -947.78297
Iteration 13: Log simulated-likelihood = -947.6765
Iteration 14: Log simulated-likelihood = -947.60503
Iteration 15: Log simulated-likelihood = -947.5831
Iteration 16: Log simulated-likelihood = -947.55131
Iteration 17: Log simulated-likelihood = -947.50624
Iteration 18: Log simulated-likelihood = -947.46284
Iteration 19: Log simulated-likelihood = -947.44467
Iteration 20: Log simulated-likelihood = -947.40163
Iteration 21: Log simulated-likelihood = -947.32181
Iteration 22: Log simulated-likelihood = -947.29791
Iteration 23: Log simulated-likelihood = -947.23404
Iteration 24: Log simulated-likelihood = -947.17847
Iteration 25: Log simulated-likelihood = -947.13231
Iteration 26: Log simulated-likelihood = -947.08427

https://www.stata.com/manuals/rmprobit.pdf#rmprobit
https://www.stata.com/manuals/cmcmmixlogit.pdf#cmcmmixlogit
https://www.stata.com/manuals/cmcmmprobit.pdf#cmcmmprobitRemarksandexamplesvariance
https://www.stata.com/manuals/cmcmmprobit.pdf#cmcmmprobit
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Iteration 27: Log simulated-likelihood = -946.83137
Iteration 28: Log simulated-likelihood = -946.73195
Iteration 29: Log simulated-likelihood = -946.44451
Iteration 30: Log simulated-likelihood = -946.37077
Iteration 31: Log simulated-likelihood = -946.34252
Iteration 32: Log simulated-likelihood = -946.32218
Iteration 33: Log simulated-likelihood = -946.31672
Iteration 34: Log simulated-likelihood = -946.31499
Iteration 35: Log simulated-likelihood = -946.31489
Iteration 36: Log simulated-likelihood = -946.31487
Iteration 37: Log simulated-likelihood = -946.31486
Iteration 38: Log simulated-likelihood = -946.3148
Iteration 39: Log simulated-likelihood = -946.3141
Iteration 40: Log simulated-likelihood = -946.31203
Iteration 41: Log simulated-likelihood = -946.3114
Iteration 42: Log simulated-likelihood = -946.31114
Iteration 43: Log simulated-likelihood = -946.31109
Iteration 44: Log simulated-likelihood = -946.31109

Multinomial probit choice model Number of obs = 3,075
Case ID variable: consumerid Number of cases = 862

Alternatives variable: car Alts per case: min = 3
avg = 3.6
max = 4

Integration sequence: Hammersley
Integration points: 704 Wald chi2(7) = 33.07
Log simulated-likelihood = -946.31109 Prob > chi2 = 0.0000

purchase Coefficient Std. err. z P>|z| [95% conf. interval]

car
dealers .043345 .027397 1.58 0.114 -.0103522 .0970422

American (base alternative)

Japanese
gender
Male -.4549281 .1454853 -3.13 0.002 -.7400741 -.1697821

income .0092406 .0054458 1.70 0.090 -.0014331 .0199142
_cons -.419605 .2779042 -1.51 0.131 -.9642872 .1250773

European
gender
Male .5630869 .4209101 1.34 0.181 -.2618817 1.388056

income .0201237 .0102355 1.97 0.049 .0000625 .0401849
_cons -2.273778 1.499661 -1.52 0.129 -5.21306 .6655044

Korean
gender
Male .3081901 .4970798 0.62 0.535 -.6660685 1.282449

income -.035191 .0346554 -1.02 0.310 -.1031144 .0327323
_cons -.9509444 1.056018 -0.90 0.368 -3.020701 1.118812

/c1_2 -.8477297 1.362819 -0.62 0.534 -3.518807 1.823347
/c1_3 -1.675403 1.433511 -1.17 0.243 -4.485033 1.134226

(car=American is the alternative normalizing location)
(car=Japanese is the alternative normalizing scale)

. matrix b704 = e(b)
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The estimated covariance parameters are shown in the output, but more useful is to see the estimated
covariance matrix or correlation matrix. The postestimation command estat will display them. estat
covariance shows the covariance matrix, and estat correlation shows the correlations.

. estat covariance

Japanese European Korean

Japanese 2
European -.8477297 1.718646

Korean -1.675403 1.420289 3.806976

Note: Covariances are for alternatives differenced with American.

. estat correlation

Japanese European Korean

Japanese 1.0000
European -0.4572 1.0000

Korean -0.6072 0.5553 1.0000

Note: Correlations are for alternatives differenced with American.

There are four alternatives in these data. But the matrices shown here are only 3× 3. This is because
the parameterization for the covariance matrix is, by default, differed by the base category, which in
this case is the alternative American.

To see an undifferenced parameterization, we specify the structural option:

. cmmprobit purchase dealers, casevars(i.gender income) factor(1) structural

Iteration 0: Log simulated-likelihood = -949.81324
Iteration 1: Log simulated-likelihood = -948.95649 (backed up)
Iteration 2: Log simulated-likelihood = -948.71164 (backed up)
Iteration 3: Log simulated-likelihood = -948.70869 (backed up)
Iteration 4: Log simulated-likelihood = -948.65719 (backed up)
Iteration 5: Log simulated-likelihood = -948.52707
Iteration 6: Log simulated-likelihood = -948.52682
Iteration 7: Log simulated-likelihood = -948.44886
Iteration 8: Log simulated-likelihood = -948.29451
Iteration 9: Log simulated-likelihood = -948.22865
Iteration 10: Log simulated-likelihood = -948.14213
Iteration 11: Log simulated-likelihood = -947.96801
Iteration 12: Log simulated-likelihood = -947.95862
Iteration 13: Log simulated-likelihood = -947.85813
Iteration 14: Log simulated-likelihood = -947.84956
Iteration 15: Log simulated-likelihood = -947.7153
Iteration 16: Log simulated-likelihood = -947.67296
Iteration 17: Log simulated-likelihood = -947.57769
Iteration 18: Log simulated-likelihood = -947.42721
Iteration 19: Log simulated-likelihood = -947.19551
Iteration 20: Log simulated-likelihood = -947.11421
Iteration 21: Log simulated-likelihood = -946.90873
Iteration 22: Log simulated-likelihood = -946.75482
Iteration 23: Log simulated-likelihood = -946.64695
Iteration 24: Log simulated-likelihood = -946.56345
Iteration 25: Log simulated-likelihood = -946.44076
Iteration 26: Log simulated-likelihood = -946.3817
Iteration 27: Log simulated-likelihood = -946.35537
Iteration 28: Log simulated-likelihood = -946.34227
Iteration 29: Log simulated-likelihood = -946.33841
Iteration 30: Log simulated-likelihood = -946.33808

https://www.stata.com/manuals/cmcmmprobitpostestimation.pdf#cmcmmprobitpostestimation
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Iteration 31: Log simulated-likelihood = -946.33792
Iteration 32: Log simulated-likelihood = -946.33659
Iteration 33: Log simulated-likelihood = -946.33345
Iteration 34: Log simulated-likelihood = -946.32049
Iteration 35: Log simulated-likelihood = -946.30741
Iteration 36: Log simulated-likelihood = -946.29907
Iteration 37: Log simulated-likelihood = -946.29486
Iteration 38: Log simulated-likelihood = -946.29353
Iteration 39: Log simulated-likelihood = -946.29243
Iteration 40: Log simulated-likelihood = -946.29179
Iteration 41: Log simulated-likelihood = -946.29159
Iteration 42: Log simulated-likelihood = -946.29158

Multinomial probit choice model Number of obs = 3,075
Case ID variable: consumerid Number of cases = 862

Alternatives variable: car Alts per case: min = 3
avg = 3.6
max = 4

Integration sequence: Hammersley
Integration points: 704 Wald chi2(7) = 29.28
Log simulated-likelihood = -946.29158 Prob > chi2 = 0.0001

purchase Coefficient Std. err. z P>|z| [95% conf. interval]

car
dealers .0702705 .0443614 1.58 0.113 -.0166763 .1572172

American (base alternative)

Japanese
gender
Male -.5091748 .1855697 -2.74 0.006 -.8728848 -.1454648

income .013291 .0067122 1.98 0.048 .0001354 .0264467
_cons -.4826255 .3426393 -1.41 0.159 -1.154186 .1889352

European
gender
Male .784163 .7110074 1.10 0.270 -.6093859 2.177712

income .0295921 .0163378 1.81 0.070 -.0024295 .0616136
_cons -3.121519 2.487812 -1.25 0.210 -7.997541 1.754503

Korean
gender
Male .5169586 .6933728 0.75 0.456 -.8420271 1.875944

income -.0271951 .021043 -1.29 0.196 -.0684387 .0140485
_cons -1.150509 1.559621 -0.74 0.461 -4.20731 1.906292

/c1_3 -1.407566 2.060875 -0.68 0.495 -5.446806 2.631674
/c1_4 -1.709069 1.381237 -1.24 0.216 -4.416244 .9981062

(car=American is the alternative normalizing location)
(car=Japanese is the alternative normalizing scale)

. estat covariance

American Japanese European Korean

American 1
Japanese 0 2
European 0 -1.407566 2.981243

Korean 0 -1.709069 2.405628 3.920917
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. estat correlation

American Japanese European Korean

American 1.0000
Japanese 0.0000 1.0000
European 0.0000 -0.5764 1.0000

Korean 0.0000 -0.6103 0.7036 1.0000

When using the structural option, you must carefully specify the covariance parameterization
because, as we described earlier, not all of J(J + 1)/2 elements of the covariance matrix are
identifiable. There are at most J(J − 1)/2− 1 estimable parameters, so either elements have to be
set to fixed values or constraints need to be imposed. Specifying any desired parameterization is
straightforward. It merely requires learning how to use the correlation() and stddev() options.
See Covariance structures in [CM] cmmprobit.

nlogit: Nested logit choice models

nlogit fits nested logit choice models. Alternatives can be nested within alternatives. For example,
the data could represent first-level choices of what restaurant to dine at and second-level choices of
what is ordered at the restaurant. Clearly, the menu choices will depend upon the type of restaurant.
The second-level alternatives are conditional on the first-level alternatives.

Although nlogit fits choice models, it is not a cm command, and you do not have to cmset your
data. Because of the nested alternatives, nlogit has its own unique data requirements.

See [CM] nlogit for full details on nested logit choice models.

Relationships with other estimation commands

If you are familiar with conditional logistic regression or with multinomial logistic regression, you
may find it helpful to see how the cm commands, and in particular cmclogit, compare with Stata’s
clogit and mlogit commands.

Duplicating cmclogit using clogit

Both cmclogit and clogit fit conditional logistic regression models. cmclogit has special
handling of errors, alternative-specific and case-specific variables, and special postestimation commands
that are appropriate for choice data. However, you can fit the same model with cmclogit and clogit.

Before we try to duplicate our cmclogit results with clogit, we will drop the cases with missing
values using the flag variable that we created with our earlier cmsample command. We do this
because clogit does not handle missing values the same way cmclogit does. By default, cmclogit
drops the entire case when any observation in the case has a missing value. clogit drops only the
observations that contain missing values.

. drop if flag != 0
(85 observations deleted)

To duplicate our cmclogit results with clogit, we merely have to create interactions of the
case-specific variables (gender and income) with the alternatives variable car. To do this, we
include the factor-variable terms car##gender and car##c.income in our clogit specification.
(We use c.income because income is continuous; see [U] 11.4.3 Factor variables for more on factor
variables.) The alternative-specific variable dealers is included in the estimation as is.

https://www.stata.com/manuals/cmcmmprobit.pdf#cmcmmprobitRemarksandexamplesvariance
https://www.stata.com/manuals/cmcmmprobit.pdf#cmcmmprobit
https://www.stata.com/manuals/cmnlogit.pdf#cmnlogit
https://www.stata.com/manuals/cmnlogit.pdf#cmnlogit
https://www.stata.com/manuals/u11.pdf#u11.4.3Factorvariables
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. clogit purchase dealers car##gender car##c.income, group(consumerid)
note: 1.gender omitted because of no within-group variance.
note: income omitted because of no within-group variance.

Iteration 0: Log likelihood = -959.21405
Iteration 1: Log likelihood = -948.48587
Iteration 2: Log likelihood = -948.1217
Iteration 3: Log likelihood = -948.12096
Iteration 4: Log likelihood = -948.12096

Conditional (fixed-effects) logistic regression Number of obs = 3,075
LR chi2(10) = 279.12
Prob > chi2 = 0.0000

Log likelihood = -948.12096 Pseudo R2 = 0.1283

purchase Coefficient Std. err. z P>|z| [95% conf. interval]

dealers .0448082 .0262818 1.70 0.088 -.0067032 .0963196

car
Japanese -.4787261 .331378 -1.44 0.149 -1.128215 .1707628
European -2.839606 .461613 -6.15 0.000 -3.744351 -1.934861

Korean .0511728 .8033048 0.06 0.949 -1.523276 1.625621

gender
Male 0 (omitted)

car#gender
Japanese #

Male -.379326 .1712399 -2.22 0.027 -.71495 -.0437021
European #

Male .653345 .2647694 2.47 0.014 .1344065 1.172283
Korean#Male .0679233 .4464535 0.15 0.879 -.8071094 .942956

income 0 (omitted)

car#c.income
Japanese .0154978 .0065145 2.38 0.017 .0027296 .0282659
European .0343647 .0080286 4.28 0.000 .0186289 .0501006

Korean -.0377716 .0158434 -2.38 0.017 -.068824 -.0067191

The output is in a different order, but all the coefficient estimates and their standard errors are exactly
the same as the earlier results from cmclogit.

And they should be—because cmclogit calls clogit to do the estimation.

Multinomial logistic regression and McFadden’s choice model

Multinomial logistic regression (mlogit) is a special case of McFadden’s choice model (cmclogit).
When there are only case-specific variables in the model and when the choice sets are balanced (that
is, every case has the same alternatives), then mlogit gives the same results as cmclogit.

We can illustrate this, but the choice data we are working with are not balanced. So let’s just use
a subset of the dataset that is balanced. We can see the distinct choice sets using cmchoiceset.

https://www.stata.com/manuals/rmlogit.pdf#rmlogit
https://www.stata.com/manuals/cmcmclogit.pdf#cmcmclogit
https://www.stata.com/manuals/cmcmchoiceset.pdf#cmcmchoiceset
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. cmchoiceset, generate(choiceset)

Tabulation of choice-set possibilities

Choice set Freq. Percent Cum.

1 2 3 373 43.27 43.27
1 2 3 4 489 56.73 100.00

Total 862 100.00

Note: Total is number of cases.

We included the generate() option to create an indicator variable choiceset with categories of
the choice sets. We use this variable to keep only those cases that have the alternatives {1, 2, 3, 4}.

. keep if choiceset == "1 2 3 4":choiceset
(1,119 observations deleted)

(If you are not familiar with the "1 2 3 4":choiceset syntax, see [U] 13.11 Label values.)

Now we run cmclogit on this balanced sample:
. cmclogit purchase, casevars(i.gender income)

Iteration 0: Log likelihood = -580.83991
Iteration 1: Log likelihood = -575.60247
Iteration 2: Log likelihood = -575.21416
Iteration 3: Log likelihood = -575.21287
Iteration 4: Log likelihood = -575.21287

Conditional logit choice model Number of obs = 1,956
Case ID variable: consumerid Number of cases = 489

Alternatives variable: car Alts per case: min = 4
avg = 4.0
max = 4

Wald chi2(6) = 41.24
Log likelihood = -575.21287 Prob > chi2 = 0.0000

purchase Coefficient Std. err. z P>|z| [95% conf. interval]

American (base alternative)

Japanese
gender
Male -.7164669 .2351233 -3.05 0.002 -1.1773 -.2556338

income .0174375 .0087817 1.99 0.047 .0002257 .0346493
_cons -.2370371 .4413551 -0.54 0.591 -1.102077 .6280029

European
gender
Male .2128877 .3494225 0.61 0.542 -.4719679 .8977433

income .0409691 .0110817 3.70 0.000 .0192494 .0626888
_cons -2.940079 .5956109 -4.94 0.000 -4.107455 -1.772703

Korean
gender
Male -.1892108 .4595242 -0.41 0.681 -1.089862 .71144

income -.0361748 .016143 -2.24 0.025 -.0678145 -.004535
_cons -.0367581 .8051745 -0.05 0.964 -1.614871 1.541355

To run mlogit, we must create a categorical dependent variable containing the chosen alterna-
tive, American, Japanese, European, or Korean. The values of the alternatives variable car at the
observations representing the chosen alternative (purchase equal to one) yield a dependent variable
appropriate for mlogit.

https://www.stata.com/manuals/u13.pdf#u13.11Labelvalues
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. keep if purchase == 1
(1,467 observations deleted)

. mlogit car i.gender income

Iteration 0: Log likelihood = -596.47415
Iteration 1: Log likelihood = -575.81328
Iteration 2: Log likelihood = -575.21417
Iteration 3: Log likelihood = -575.21287
Iteration 4: Log likelihood = -575.21287

Multinomial logistic regression Number of obs = 489
LR chi2(6) = 42.52
Prob > chi2 = 0.0000

Log likelihood = -575.21287 Pseudo R2 = 0.0356

car Coefficient Std. err. z P>|z| [95% conf. interval]

American (base outcome)

Japanese
gender
Male -.7164669 .2351233 -3.05 0.002 -1.1773 -.2556338

income .0174375 .0087817 1.99 0.047 .0002257 .0346493
_cons -.2370371 .4413551 -0.54 0.591 -1.102077 .6280029

European
gender
Male .2128877 .3494225 0.61 0.542 -.4719679 .8977433

income .0409691 .0110817 3.70 0.000 .0192494 .0626888
_cons -2.940079 .5956109 -4.94 0.000 -4.107455 -1.772703

Korean
gender
Male -.1892108 .4595242 -0.41 0.681 -1.089862 .71144

income -.0361748 .016143 -2.24 0.025 -.0678145 -.004535
_cons -.0367581 .8051745 -0.05 0.964 -1.614871 1.541355

The estimates are identical.

Estimation considerations

When fitting choice models, you may need to address issues such as setting the number of
integration points, lack of convergence, or data with multiple outcomes selected. Below, we provide
advice on these topics.

Setting the number of integration points

In Maximum simulated likelihood of [CM] Intro 8, we describe how the estimators for cmmixlogit,
cmxtmixlogit, cmmprobit, and cmroprobit all approximate integrals using Monte-Carlo simulation
to compute their likelihoods. Monte-Carlo simulation creates additional variance in the estimated
results, and the variance is dependent on the number of points used in the integration. More points
give smaller Monte-Carlo variance. Hence, when fitting final models, it is a good idea to use the
option intpoints(#) to increase the number of integration points and check that the coefficient and
parameter estimates and their standard estimates are stable. That is, check that they do not change
appreciably as the number of integration points is increased.

https://www.stata.com/manuals/cmintro8.pdf#cmIntro8Remarksandexamplesintegration
https://www.stata.com/manuals/cmintro8.pdf#cmIntro8
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In the first cmmprobit example in this introduction, the default number of integration points was
704. We stored the coefficient vector from that estimation in the vector b704. Let’s open a fresh copy
of our data and refit the same model, specifying intpoints(2000).

. use https://www.stata-press.com/data/r18/carchoice, clear
(Car choice data)

. cmset consumerid car
note: alternatives are unbalanced across choice sets; choice sets of

different sizes found.

Case ID variable: consumerid
Alternatives variable: car

. cmmprobit purchase dealers, casevars(i.gender income) factor(1)
> intpoints(2000)

(iteration log omitted )

Multinomial probit choice model Number of obs = 3,075
Case ID variable: consumerid Number of cases = 862

Alternatives variable: car Alts per case: min = 3
avg = 3.6
max = 4

Integration sequence: Hammersley
Integration points: 2000 Wald chi2(7) = 32.62
Log simulated-likelihood = -946.31243 Prob > chi2 = 0.0000

purchase Coefficient Std. err. z P>|z| [95% conf. interval]

car
dealers .0440584 .0279595 1.58 0.115 -.0107413 .0988581

American (base alternative)

Japanese
gender
Male -.4558936 .1451544 -3.14 0.002 -.740391 -.1713961

income .0091975 .0054259 1.70 0.090 -.0014371 .019832
_cons -.4174475 .2776516 -1.50 0.133 -.9616346 .1267396

European
gender
Male .57696 .4404936 1.31 0.190 -.2863916 1.440312

income .0204216 .0108951 1.87 0.061 -.0009325 .0417757
_cons -2.326064 1.586286 -1.47 0.143 -5.435127 .7829993

Korean
gender
Male .3182168 .5023253 0.63 0.526 -.6663227 1.302756

income -.0345119 .033025 -1.05 0.296 -.0992397 .0302159
_cons -.9586931 1.055673 -0.91 0.364 -3.027775 1.110389

/c1_2 -.896706 1.400021 -0.64 0.522 -3.640697 1.847285
/c1_3 -1.667291 1.366339 -1.22 0.222 -4.345266 1.010685

(car=American is the alternative normalizing location)
(car=Japanese is the alternative normalizing scale)

. matrix b2000 = e(b)

. display mreldif(b704, b2000)

.02582179

We put the coefficient vector in b2000 and compared it with the earlier results using the mreldif()
function, which computes relative differences between vectors (or between matrices). We see that

https://www.stata.com/manuals/fnmatrixfunctions.pdf#fnMatrixfunctionsFunctionsmreldif()
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there is a maximum relative difference between the coefficients from the two estimations of about
3%.

We now double the number of integration points to 4000 and store the coefficient vector in b4000.
We omit showing the cmmprobit results and show only the comparison of the coefficient vectors:

. display mreldif(b2000, b4000)

.00178383

The relative difference declined as intpoints() is increased. The maximum relative difference
between the estimation with 2000 points and the one with 4000 points is only 0.2%.

When we look at the differences between coefficients from different runs, it is important to note
the values of the coefficients relative to their standard errors. For example, we may have a variance
parameter that is near zero with a big standard error (relative to the parameter estimate). The relative
difference of the parameter estimate between runs with different intpoints() may not decline
rapidly with increasing numbers of points because we are essentially just fitting random noise.

Convergence

Sometimes, you will try to fit a model with one of the CM commands, and the model will not
converge. You might see an iteration log that goes on and on with (backed up) or (not concave)
at the end of each line.

In the previous section, we showed you how increasing the number of integration points using
the option intpoints(#) improves precision of the estimates by reducing the random variance of
the Monte-Carlo integration. The randomness of the Monte-Carlo integration can affect convergence
in a random way. It is possible that rerunning the command with a different random-number seed
(using set seed # or the option intseed(#)) may cause a model to converge that previously did
not. Increasing the number of integration points might cause a model to converge that did not when
fewer points were used. It is also possible that a model may converge using the default number of
integration points, but no longer converge when more integration points are used.

Our advice is when your model is not converging, first try increasing the number of integration
points. If this does not help, try thinking about your model. Perhaps, this should have been the first
thing to try. But this might be more painful than setting intpoints() to a big number.

Lack of convergence may be trying to tell you something about your model. Perhaps, the model
is misspecified. That is, your model is not close to the true data-generating process. Or, perhaps, you
simply need to collect more data.

You may want to try simplifying your model. It is best to start with a covariance parameterization
with just a few parameters and then gradually increase them. For cmmprobit, using correla-
tion(independent) and stddev(heteroskedastic) is a good model to start with. Look at the
variances before trying to parameterize any correlations. Using correlation(fixed matname) lets
you specify which elements are fixed and which are estimated. You can also fit models with just one
free correlation parameter. cmroprobit, which we describe in [CM] Intro 6, has the same options
and the same advice can be followed.

For the mixed logit models fit by cmmixlogit and cmxtmixlogit, the covariance parameterization
is specified by different options, but the same general advice applies. If you are having convergence
problems, start with a simple model and gradually increase the number of covariance parameters
estimated.

https://www.stata.com/manuals/cmcmmprobit.pdf#cmcmmprobit
https://www.stata.com/manuals/cmcmroprobit.pdf#cmcmroprobit
https://www.stata.com/manuals/cmintro6.pdf#cmIntro6
https://www.stata.com/manuals/cmcmmixlogit.pdf#cmcmmixlogit
https://www.stata.com/manuals/cmcmxtmixlogit.pdf#cmcmxtmixlogit
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More than one chosen alternative

What if we have data in which more than one alternative is chosen for some of or all the cases?

Well, first, we need to assess whether the data are in fact rank-ordered alternatives. If so, see
[CM] Intro 6. There are two CM estimators for rank-ordered alternatives: cmrologit and cmroprobit.

Second, we need to assess whether the data are perhaps actually panel data and whether the choices
were made at different times. For example, we might have data on how people commuted to work on
a given week. Some people may have driven a car every day, but some may have driven a car some
days and taken the bus on other days. Data such as these are panel data. If we have data by day of
the week, we can analyze them as panel data. See [CM] Intro 7 and example 4 in [CM] cmclogit.

But what if the data arose from a design in which multiple choices were allowed and not ranked?
For example, suppose consumers were given four breakfast cereals and asked to pick their two
favorites, without picking a single most favorite. These data are not rank-ordered data, nor are they
panel data.

We note that the random utility model (see [CM] Intro 8) for discrete choices yields only one
chosen alternative per case: that with the greatest utility. In rank-ordered models, it yields a set of
ranked alternatives without any ties. Because the utility function is continuous, ties are theoretically
impossible.

Train (2009, sec. 2.2) notes that the set of alternatives can always be made mutually exclusive by
considering the choice of two alternatives as a separate alternative. For example, with one or two
choices allowed from alternatives A, B, and C, the set of alternatives is A only, B only, C only, A
and B, A and C, and B and C, a total of six alternatives. When there are only a few alternatives,
this may be an appropriate way to model your data.
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