Title stata.com

stteffects postestimation — Postestimation tools for stteffects

Postestimation commands predict Remarks and examples References Also see

Postestimation commands

The following postestimation commands are of special interest after stteffects:

Command	Description
teoverlap tebalance	overlap plots check balance of covariates

The following standard postestimation commands are also available:

Command	Description summary statistics for the estimation sample			
estat summarize				
estat vce	variance-covariance matrix of the estimators (VCE)			
estimates	cataloging estimation results			
etable	table of estimation results			
hausman	Hausman's specification test			
lincom	point estimates, standard errors, testing, and inference for linear combination of coefficients			
nlcom	point estimates, standard errors, testing, and inference for nonlinear combina- tions of coefficients			
predict	propensity scores, censored survival probability, etc.			
predictnl	point estimates, standard errors, testing, and inference for generalized pre- tions			
test	Wald tests of simple and composite linear hypotheses			
testnl	Wald tests of nonlinear hypotheses			

predict

Description for predict

predict creates a new variable containing predictions such as treatment effects, conditional means, propensity scores, linear predictions, and log square roots of latent variances.

Menu for predict

Statistics > Postestimation

Syntaxes for predict

statistic

Syntaxes are presented under the following headings:

Syntax for predict after stteffects ipw Syntax for predict after stteffects ipwra Syntax for predict after stteffects ra Syntax for predict after stteffects wra

Syntax for predict after stteffects ipw

```
predict [type] { stub* | newvar | newvarlist } [if] [in]
    [, statistic tlevel(treat_level)]
```

Description

Main			
ps propensity score; the default			
<u>cens</u> urv	censored survival probability		
xb linear prediction for propensity score			
cxb	linear prediction for censoring model		
<u>lns</u> igma	log square root of latent variance (for treatment model hetprobit())		
<u>clnsh</u> ape	log of conditional latent shape (for censoring distribution Weibull,		
	log normal, or gamma)		

If you do not specify tlevel() and only specify one new variable, ps assumes tlevel() specifies the first treatment level.

You specify one or t new variables with ps, where t is the number of treatment levels.

You specify one or t-1 new variables with xb and lnsigma.

You specify one new variable with censury, cxb, and clnshape.

If you do not specify tlevel() and only specify one new variable, xb and lnsigma assume tlevel() specifies the first noncontrol treatment level.

Syntax for predict after stteffects ipwra

```
predict [type] { stub* | newvar | newvarlist } [if] [in]
        [, statistic <u>tl</u>evel(treat_level)]
```

predict $[type]$ $stub*$ $[if]$ $[in]$, scores				
statistic	Description			
Main				
te	treatment effect; the default			
$\underline{\mathtt{cm}}\mathtt{ean}$	conditional mean at treatment level			
ps	propensity score			
<u>cens</u> urv	censored survival probability			
xb linear prediction for outcome model				
cxb	linear prediction for censoring model			
psxb	linear prediction for propensity score			
<u>lnsh</u> ape	log of conditional latent shape (for outcome distribution Weibull, log normal, or gamma) at treatment level			
<u>clnsh</u> ape	log of conditional latent shape (for censoring distribution Weibull, log normal, or gamma)			
pslnsigma	log square root of latent variance (for treatment model hetprobit())			

If you do not specify tlevel() and only specify one new variable, te and psxb assume tlevel() specifies the first noncontrol treatment level.

for propensity score

You specify one or t new variables with cmean, ps, xb, and lnshape, where t is the number of treatment levels.

You specify one new variable with censury, cxb, and clnshape.

If you do not specify tlevel() and only specify one new variable, cmean, ps, xb, and pslnsigma assume tlevel() specifies the first treatment level.

You specify one or t-1 new variables with te, psxb, and pslnsigma.

Syntax for predict after stteffects ra

statistic Description

Main

Main

te treatment effect; the default

 cmean
 conditional mean at treatment level

 xb
 linear prediction for outcome model

<u>lnsh</u>ape log of conditional latent shape (for outcome distribution Weibull,

log normal, or gamma) at treatment level

You specify one or t new variables with cmean, xb, and lnshape, where t is the number of treatment levels.

You specify one or t-1 new variables with te.

Syntax for predict after stteffects wra

predict
$$[type]$$
 $stub*$ $[if]$ $[in]$, $scores$

statistic Description

te treatment effect; the default

cmean conditional mean at treatment level

censurv censored survival probability

xb linear prediction for outcome model cxb linear prediction for censoring model

Inshape log of conditional latent shape (for outcome distribution Weibull,

log normal, or gamma) at treatment level

clnshape log of conditional latent shape (for censoring distribution Weibull,

log normal, or gamma)

You specify one or t new variables with cmean, xb, and lnshape, where t is the number of treatment levels.

You specify one or t-1 new variables with te.

You specify one new variable with censury, cxb, and clnshape.

If you do not specify tlevel() and only specify one new variable, te assumes tlevel() specifies the first noncontrol treatment level.

If you do not specify tlevel() and only specify one new variable, cmean, xb, and lnshape assume tlevel() specifies the first treatment level.

If you do not specify tlevel() and only specify one new variable, te assumes tlevel() specifies the first noncontrol treatment level.

If you do not specify tlevel() and only specify one new variable, cmean, xb, and lnshape assume tlevel() specifies the first treatment level.

Options for predict

Options are presented under the following headings:

Options for predict after stteffects ipw Options for predict after stteffects ipwra Options for predict after stteffects ra Options for predict after stteffects wra

Options for predict after stteffects ipw

Main

- ps, the default, calculates the propensity score of each treatment level or the treatment level specified in tlevel(). If you specify the tlevel() option, you need to specify only one new variable; otherwise, you must specify a new variable for each treatment level.
- censurv calculates the survivor probability from the time-to-censoring model. (In other words, it calculates the probability that an outcome is not censored.) This option is allowed only if a censoring model is specified at estimation time. You need to specify only one new variable.
- xb calculates the propensity score linear prediction at each noncontrol level of the treatment or the treatment level specified in tlevel(). If you specify the tlevel() option, you need to specify only one new variable; otherwise, you must specify a new variable for each treatment level (except the control level).
- cxb calculates the linear prediction of the censoring model. This option is allowed only if a censoring model is specified at estimation time. You need to specify only one new variable.
- lnsigma calculates the log square root of the latent variance. This option is valid only when treatment
 model hetprobit() is used. You need to specify only one new variable.
- clnshape calculates the log of the conditional latent shape parameter of the censoring distribution. This option is valid when censoring distribution Weibull, log normal, or gamma is used. You need to specify only one new variable.
- tlevel(*treat_level*) specifies the treatment level for prediction.
- scores calculates the score variables. Parameter-level scores are computed for the treatment mean and average treatment-effect equations. Equation-level scores are computed for the censoring and propensity-score equations.

The jth new variable will contain the scores for the jth parameter in the coefficient table if $j \le t$, where t is the number of treatment levels. Otherwise, it will contain the scores for fitted equation j-t following the first t parameters in the coefficient table.

Options for predict after stteffects ipwra

Main

- te, the default, calculates the treatment effect for each noncontrol treatment level or the treatment level specified in tlevel(). If you specify the tlevel() option, you need to specify only one new variable; otherwise, you must specify a new variable for each treatment level (except the control level).
- cmean calculates the conditional mean for each treatment level or the treatment level specified in tlevel(). If you specify the tlevel() option, you need to specify only one new variable; otherwise, you must specify a new variable for each treatment level.

- 6
- ps calculates the propensity score of each treatment level or the treatment level specified in tlevel(). If you specify the tlevel() option, you need to specify only one new variable; otherwise, you must specify a new variable for each treatment level.
- censury calculates the survivor probability from the time-to-censoring model. (In other words, it calculates the probability that an outcome is not censored.) This option is allowed only if a censoring model is specified at estimation time. You need to specify only one new variable.
- xb calculates the outcome model linear prediction at each treatment level or the treatment level specified in tlevel(). If you specify the tlevel() option, you need to specify only one new variable; otherwise, you must specify a new variable for each treatment level.
- cxb calculates the linear prediction of the censoring model. This option is allowed only if a censoring model is specified at estimation time. You need to specify only one new variable.
- psxb calculates the propensity score linear prediction at each noncontrol level of the treatment or the treatment level specified in tlevel(). If you specify the tlevel() option, you need to specify only one new variable; otherwise, you must specify a new variable for each treatment level (except the control level).
- Inshape calculates the log of the conditional latent shape parameter for each treatment level or the
 treatment level specified in tlevel(). This option is valid when outcome distribution Weibull,
 log normal, or gamma is used. If you specify the tlevel() option, you need to specify only one
 new variable; otherwise, you must specify a new variable for each treatment level.
- clnshape calculates the log of the conditional latent shape parameter for the censoring distribution. This option is valid when censoring distribution Weibull, log normal, or gamma is used. You need to specify only one new variable.
- pslnsigma calculates the log square root of the latent variance for the propensity score. This option is valid only when treatment model hetprobit() is used. You need to specify only one new variable.
- tlevel(treat_level) specifies the treatment level for prediction.
- scores calculates the score variables. Parameter-level scores are computed for the treatment mean and average treatment-effect equations. Equation-level scores are computed for the outcome, censoring, and propensity-score equations.

The jth new variable will contain the scores for the jth parameter in the coefficient table if $j \le t$, where t is the number of treatment levels. Otherwise, it will contain the scores for fitted equation j-t following the first t parameters in the coefficient table.

Options for predict after stteffects ra

(Main)

- te, the default, calculates the treatment effect for each noncontrol treatment level or the treatment level specified in tlevel(). If you specify the tlevel() option, you need to specify only one new variable; otherwise, you must specify a new variable for each treatment level (except the control level).
- cmean calculates the conditional mean for each treatment level or the treatment level specified in tlevel(). If you specify the tlevel() option, you need to specify only one new variable; otherwise, you must specify a new variable for each treatment level.
- xb calculates the outcome model linear prediction at each treatment level or the treatment level specified in tlevel(). If you specify the tlevel() option, you need to specify only one new variable; otherwise, you must specify a new variable for each treatment level.

- Inshape calculates the log of the conditional latent shape parameter for each treatment level or the treatment level specified in tlevel(). This option is valid when the outcome distribution Weibull, log normal, or gamma is used. If you specify the tlevel() option, you need to specify only one new variable; otherwise, you must specify a new variable for each treatment level.
- tlevel(treat_level) specifies the treatment level for prediction.
- scores calculates the score variables. Parameter-level scores are computed for the treatment mean and average treatment-effect equations. Equation-level scores are computed for the outcome equations.

The jth new variable will contain the scores for the jth parameter in the coefficient table if $j \le t$, where t is the number of treatment levels. Otherwise, it will contain the scores for fitted equation i-t following the first t parameters in the coefficient table.

Options for predict after stteffects wra

[Main]

- te, the default, calculates the treatment effect for each noncontrol treatment level or the treatment level specified in tlevel(). If you specify the tlevel() option, you need to specify only one new variable; otherwise, you must specify a new variable for each treatment level (except the control level).
- cmean calculates the conditional mean for each treatment level or the treatment level specified in tlevel(). If you specify the tlevel() option, you need to specify only one new variable; otherwise, you must specify a new variable for each treatment level.
- censury calculates the survivor probability from the time-to-censoring model. (In other words, it calculates the probability that an outcome is not censored.) This option is allowed only if a censoring model is specified at estimation time. You need to specify only one new variable.
- xb calculates the outcome model linear prediction at each treatment level or the treatment level specified in tlevel(). If you specify the tlevel() option, you need to specify only one new variable; otherwise, you must specify a new variable for each treatment level.
- Inshape calculates the log of the conditional latent shape parameter for each treatment level or the treatment level specified in tlevel(). This option is valid when the outcome distribution Weibull, log normal, or gamma is used. If you specify the tlevel() option, you need to specify only one new variable; otherwise, you must specify a new variable for each treatment level.
- clnshape calculates the log of the conditional latent shape parameter of the censoring distribution. This option is valid when the censoring distribution Weibull, log normal, or gamma is used. You need to specify only one new variable.
- tlevel(*treat_level*) specifies the treatment level for prediction.
- scores calculates the score variables. Parameter-level scores are computed for the treatment mean and average treatment-effect equations. Equation-level scores are computed for the outcome and censoring equations.

The jth new variable will contain the scores for the jth parameter in the coefficient table if $j \le t$, where t is the number of treatment levels. Otherwise, it will contain the scores for fitted equation j-t following the first t parameters in the coefficient table.

Remarks and examples

stata.com

Checking model specification is the most frequent reason for postestimation computation after stteffects, teoverlap provides a graphical method for checking the overlap assumption; see [CAUSAL] teoverlap. Summarizing the estimated probabilities provides another check, Recall that the reciprocals of these estimated probabilities are used as weights by some of the estimators. If the estimated probabilities are too small, the weights get too large and the estimators become unstable.

We estimate the average treatment effect of smoking on the time to a second heart attack by inverse-probability weighting; see example 1 of [CAUSAL] stteffects ipw for background.

```
. use https://www.stata-press.com/data/r18/sheart
(Time to second heart attack (fictional))
. stteffects ipw (smoke age exercise education) (age exercise diet education)
        Failure _d: fail
  Analysis time _t: atime
Iteration 0: EE criterion = 2.042e-18
Iteration 1: EE criterion = 5.191e-31
Survival treatment-effects estimation
                                                 Number of obs
                                                                           2,000
               : inverse-probability weights
Estimator
Outcome model : weighted mean
Treatment model: logit
Censoring model: Weibull
                              Robust
          _t
               Coefficient std. err.
                                                 P>|z|
                                                            [95% conf. interval]
                                            7.
ATF.
       smoke
    (Smoker
         VS
 Nonsmoker)
                 -2.22226
                             .6307573
                                         -3.52
                                                 0.000
                                                           -3.458522
                                                                       -.9859983
POmean
       smoke
                 4.235569
                             .5210937
                                          8.13
                                                 0.000
                                                            3.214244
                                                                        5.256894
  Nonsmoker
```

Below, we compute the estimated probabilities of being a Nonsmoker and store them in ps0. Likewise, the estimated probabilities of being a Smoker are stored in ps1.

```
. predict ps0 ps1, ps
```

The overlap condition requires that each of these probabilities be sufficiently greater than 0 and less than 1 for every individual; see Assumptions and tradeoffs under Remarks and examples in [CAUSAL] stteffects intro.

In practice, we know that weighting estimators perform poorly when the weights become too large. This approach requires that the probability of being a Nonsmoker not be too small among Nonsmokers and that the probability of being a Smoker not be too small among Smokers. Below, we summarize these probabilities.

			smoke==0	if fail==1 &	summarize ps0	
Max	Min	Std. dev.	Mean	0bs	Variable	
.9840293	.3872543	.138754	.6712529	716	ps0	
			smoke==1	if fail==1 &	summarize ps1	
Max	Min	Std. dev.	Mean	Obs	Variable	
.6125538	.0850604	.1101277	.4101277	492	ps1	

The minimum probability of being a Nonsmoker among Nonsmokers is 0.39. The minimum probability of being a Smoker among Smokers is 0.09. Neither minimum seems too small.

Estimating survival-time treatment effects also uses weights to adjust for censored outcomes; see [CAUSAL] **stteffects intro**. Thus we require that the probability of an uncensored failure also be sufficiently greater than 0. Below, we compute the estimated probabilities of failure and summarize them among those that fail.

- . predict fprob2, censurv
- . summarize fprob if fail==1

Variable	Obs	Mean	Std. dev.	Min	Max
fprob2	1,208	.7246067	.2143543	.0364246	.9999086

The minimum probability of 0.04 does not appear too small.

□ Technical note

The previous discussion builds on the intuition that the weights used in a weighting estimator should not be too large.

This technical note goes a little further by explicitly computing the weights and using them to replicate the inverse-probability-weighted point estimate for the Nonsmoker potential-outcome mean.

We now compute the weights using the predicted probabilities computed in the examples above and then use mean to compute the weighted average that estimates the potential-outcome mean for Nonsmokers.

- . generate double ipw0 = 1/(ps0*fprob)
- . mean _t [pw=ipw0] if smoke==0 & fail==1

Mean estimation	on	Number of obs = 716	
	Mean	Std. err.	[95% conf. interval]
t	4.235569	.5820212	3.092894 5.378244

The weights account for data lost to the Smoker potential outcome or to censoring by increasing the importance of observations that were observed to be Nonsmoker failure times even though they were not likely to be observed.

The point estimate matches that reported by stteffects ipw; the standard errors differ because mean takes the estimated weights as given. See *Inverse-probability-weighted estimators* under *Methods and formulas* in [CAUSAL] stteffects ipwra.

References

- Angrist, J. D., and J.-S. Pischke. 2009. Mostly Harmless Econometrics: An Empiricist's Companion. Princeton, NJ: Princeton University Press.
- Bai, X., A. A. Tsiatis, and S. M. O'Brien. 2013. Doubly robust estimators of treatment-specific survival distributions in observational studies with stratified sampling. *Biometrics* 69: 830–839. https://doi.org/10.1111/biom.12076.
- Cameron, A. C., and P. K. Trivedi. 2005. Microeconometrics: Methods and Applications. New York: Cambridge University Press.
- Cattaneo, M. D. 2010. Efficient semiparametric estimation of multi-valued treatment effects under ignorability. *Journal of Econometrics* 155: 138–154. https://doi.org/10.1016/j.jeconom.2009.09.023.
- Cattaneo, M. D., D. M. Drukker, and A. D. Holland. 2013. Estimation of multivalued treatment effects under conditional independence. Stata Journal 13: 407–450.
- Guo, S., and M. W. Fraser. 2015. Propensity Score Analysis: Statistical Methods and Applications. 2nd ed. Thousand Oaks, CA: Sage.
- Imbens, G. W. 2004. Nonparametric estimation of average treatment effects under exogeneity: A review. Review of Economics and Statistics 86: 4–29. https://doi.org/10.1162/003465304323023651.
- Imbens, G. W., and J. M. Wooldridge. 2009. Recent developments in the econometrics of program evaluation. *Journal of Economic Literature* 47: 5–86. https://doi.org/10.1257/jel.47.1.5.
- Rosenbaum, P. R., and D. B. Rubin. 1983. The central role of the propensity score in observational studies for causal effects. *Biometrika* 70: 41–55. https://doi.org/10.2307/2335942.
- Rubin, D. B. 1974. Estimating causal effects of treatments in randomized and nonrandomized studies. *Journal of Educational Psychology* 66: 688–701. https://doi.org/10.1037/h0037350.
- Tsiatis, A. A. 2006. Semiparametric Theory and Missing Data. New York: Springer.
- Vittinghoff, E., D. V. Glidden, S. C. Shiboski, and C. E. McCulloch. 2012. Regression Methods in Biostatistics: Linear, Logistic, Survival, and Repeated Measures Models. 2nd ed. New York: Springer.
- Wooldridge, J. M. 2010. Econometric Analysis of Cross Section and Panel Data. 2nd ed. Cambridge, MA: MIT Press.

Also see

[CAUSAL] **tebalance** — Check balance after teffects or stteffects estimation

[CAUSAL] teoverlap — Overlap plots

[CAUSAL] stteffects ipw — Survival-time inverse-probability weighting

[CAUSAL] stteffects ipwra — Survival-time inverse-probability-weighted regression adjustment

[CAUSAL] stteffects ra — Survival-time regression adjustment

[CAUSAL] stteffects wra — Survival-time weighted regression adjustment

[U] 20 Estimation and postestimation commands

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Organization of the United Nations. StataNow and NetCourseNow are trademarks of StataCorp LLC. Other brand and product names are registered trademarks or trademarks of their respective companies. Copyright © 1985–2023 StataCorp LLC, College Station, TX, USA. All rights reserved.

For suggested citations, see the FAQ on citing Stata documentation.