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Description

gsbounds computes stopping boundaries for group sequential designs (GSDs), a class of experimental
design popular in clinical trials. GSDs incorporate planned interim analyses, or looks at the data, and
provide criteria for stopping the trial early based on values of a test statistic. Stopping can be for
efficacy, futility, or both. For a software-free introduction to GSDs, see [ADAPT] GSD intro; for
an introduction to Stata’s gs suite of commands, see [ADAPT] gs, and for associated sample-size
calculations, see [ADAPT] gsdesign.

Quick start
Calculate boundaries using the default settings: a two-sided O’Brien–Fleming design with two evenly

spaced analyses (one interim look, one final look), power of 0.8, and familywise significance level
α = 0.05

gsbounds

Same as above, but add a nonbinding O’Brien–Fleming futility boundary and conduct three evenly
spaced analyses

gsbounds, efficacy(obfleming) futility(obfleming) nlooks(3)

Same as above, but plan the looks to occur with 50%, 75%, and 100% of the data, and visualize the
bounds on a graph

gsbounds, efficacy(obfleming) futility(obfleming) ///
information(0.5 0.75 1) graphbounds

Same as above, but use error-spending approximations of O’Brien–Fleming bounds
gsbounds, efficacy(errobfleming) futility(errobfleming) ///

information(0.5 0.75 1) graphbounds

Nonbinding futility boundaries for an upper one-sided test using a five-look Wang–Tsiatis design
with parameter ∆f = 0.3, power of 0.9, and significance level α = 0.01

gsbounds, alpha(0.01) power(0.9) futility(wtsiatis(0.3)) nlooks(5) upper

Same as above, but use a binding futility bound
gsbounds, alpha(0.01) power(0.9) futility(wtsiatis(0.3), binding) ///

nlooks(5) upper

Efficacy and nonbinding futility boundaries for a lower one-sided test using a seven-look error-spending
Hwang–Shih–de Cani design with efficacy parameter γe = −2, futility parameter γf = −4, power
of 0.9, and significance level α = 0.01

gsbounds, alpha(0.01) power(0.9) efficacy(hsdecani(-2)) ///
futility(hsdecani(-4)) nlooks(7) lower
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Same as above, but use a binding Kim–DeMets futility boundary with parameter ρf = 2.5, and graph
the boundaries but not the fixed-sample critical values

gsbounds, alpha(0.01) power(0.9) efficacy(hsdecani(-2)) ///
futility(kdemets(2.5), binding) nlooks(7) lower ///
graphbounds(nofixed)

Menu
Statistics > Power, precision, and sample size

Syntax

Calculate efficacy stopping boundaries

gsbounds
[
, efficacy(boundary) options

]

Calculate futility stopping boundaries

gsbounds, futility(boundary
[
, binding

]
)
[

options
]

Calculate efficacy and futility stopping boundaries

gsbounds, efficacy(boundary) futility(boundary
[
, binding

]
)
[

options
]

boundary Description

obfleming classical O’Brien–Fleming bound
pocock classical Pocock bound
wtsiatis(#) classical Wang–Tsiatis bound with specified parameter value
errpocock error-spending Pocock-style bound
errobfleming error-spending O’Brien–Fleming-style bound
kdemets(#) error-spending Kim–DeMets bound with specified parameter value
hsdecani(#) error-spending Hwang–Shih–de Cani bound with specified parameter value
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options Description

Main

efficacy(boundary) boundary for efficacy stopping; if neither efficacy()
nor futility() is specified, the default is
efficacy(obfleming)

futility(boundary
[
, binding

]
) boundary for futility stopping; use binding to request binding

futility bounds (default is nonbinding)
nlooks(#) total number of analyses

(nlooks()− 1 interim analyses and one final analysis)
information(numlist) sequence of information levels for analyses;

default is evenly spaced
nopvalues suppress p-values
alpha(#) overall significance level for all tests; default is alpha(0.05)

power(#) overall power for all tests; default is power(0.8)

beta(#) overall probability of type II error for all tests;
default is beta(0.2)

upper upper one-sided test; default is two-sided
lower lower one-sided test; default is two-sided
onesided synonym for upper

Graph

graphbounds
[
(graphopts)

]
graph boundaries

matlistopts(general options) control the display of boundaries; seldom used
optimopts optimization options for boundary calculations; seldom used

collect is allowed; see [U] 11.1.10 Prefix commands.
matlistopts() and optimopts do not appear in the dialog box.

graphopts Description

xdiminformation label the x axis with the information fraction (default);
use information levels if information() specified

xdimlooks label the x axis with the number of each look
noshade do not shade the rejection, acceptance, and continuation

regions
rejectopts(area options) change the appearance of the rejection region
acceptopts(area options) change the appearance of the acceptance region
continueopts(area options) change the appearance of the continuation region
efficacyopts(connected options) change the appearance of the efficacy bound
futilityopts(connected options) change the appearance of the futility bound
nolooklines do not draw vertical reference lines at each look
looklinesopts(added line suboptions) change the appearance of the reference lines

marking each look
nofixed do not label critical values from a fixed study design
fixedopts(marker options) change the appearance of the fixed-study critical values
twoway options any options other than by() documented in

[G-3] twoway options

https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/pmatlist.pdf#pmatlistSyntaxgeneral_options
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/g-3area_options.pdf#g-3area_options
https://www.stata.com/manuals/g-3area_options.pdf#g-3area_options
https://www.stata.com/manuals/g-3area_options.pdf#g-3area_options
https://www.stata.com/manuals/adapt.pdf#adaptgsboundsOptionsopt_graphopts
https://www.stata.com/manuals/adapt.pdf#adaptgsboundsOptionsopt_graphopts
https://www.stata.com/manuals/g-3added_line_options.pdf#g-3added_line_optionsOptionsSuboptions
https://www.stata.com/manuals/g-3marker_options.pdf#g-3marker_optionsSyntax
https://www.stata.com/manuals/g-3twoway_options.pdf#g-3twoway_options
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optimopts Description

intpointsscale(#) scaling factor for number of quadrature points;
default is intpointsscale(20)

initinfo(initinfo spec) initial value(s) for maximum information
initscale(#) initial value for scaling factor C of classical bounds
infotolerance(#) tolerance for bisection search for maximum information of error-

spending bounds with futility stopping; default is infotol(1e-6)

marquardt use the Marquardt stepping algorithm in nonconcave regions;
default is to use a mixture of steepest descent and Newton

technique(algorithm spec) maximization technique
iterate(#) perform maximum of # iterations; default is iterate(300)[
no
]
log display an iteration log; default is nolog

trace display current parameter vector in iteration log
gradient display current gradient vector in iteration log
showstep report steps within an iteration in iteration log
hessian display current negative Hessian matrix in iteration log
showtolerance report the calculated result that is compared with the effective

convergence criterion
tolerance(#) tolerance for the parameter being optimized;

default is tolerance(1e-12)

ftolerance(#) tolerance for the objective function;
default is ftolerance(1e-10)

nrtolerance(#) tolerance for the scaled gradient;
default is nrtolerance(1e-16)

nonrtolerance ignore the nrtolerance() option

Options

� � �
Main �

efficacy(boundary) specifies the boundary for efficacy stopping. If neither efficacy() nor fu-
tility() is specified, the default is efficacy(obfleming).

futility(boundary
[
, binding

]
) specifies the boundary for futility stopping.

binding specifies binding futility bounds. With binding futility bounds, if the result of an interim
analysis crosses the futility boundary and lies in the acceptance region, the trial must end or risk
overrunning the specified type I error. With nonbinding futility bounds, the trial does not need
to stop if the result of an interim analysis crosses the futility boundary; the familywise type I
error rate is controlled even if the trial continues. By default, futility bounds are nonbinding.

nlooks(#) specifies the total number of analyses to be performed (nlooks()− 1 interim analyses
and one final analysis). If neither nlooks() nor information() is specified, the default is
nlooks(2).

information(numlist) specifies a sequence of information levels for interim and final analyses.
This must be a sequence of increasing positive numbers, but the scale is unimportant because the
information sequence will be automatically rescaled to ensure the maximum information is reached
at the final look. By default, analyses are evenly spaced.

nopvalues suppresses the p-values from being reported in the table of boundaries for each look.

https://www.stata.com/manuals/adapt.pdf#adaptgsboundsOptionsopt_optim_initinfo
https://www.stata.com/manuals/adaptglossary.pdf#adaptGlossarydef_maxinfo
https://www.stata.com/manuals/adapt.pdf#adaptgsboundsOptionsopt_optim_tech
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/adaptglossary.pdf#adaptGlossarydef_maxinfo
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alpha(#) sets the overall significance level, which is the familywise type I error rate for all analyses
(interim and final). The default is alpha(0.05).

power(#) sets the overall power for all analyses. The default is power(0.8). If beta() is specified,
power() is set to be 1− beta(). Only one of power() or beta() may be specified.

beta(#) sets the overall probability of a type II error. The default is beta(0.2). If power() is
specified, beta() is set to be 1− power(). Only one of beta() or power() may be specified.

upper indicates an upper one-sided test, which means that the postulated value of the parameter is
larger than the value under the null hypothesis. The default is two-sided.

lower indicates a lower one-sided test, which means that the postulated value of the parameter is
smaller than the value under the null hypothesis. The default is two-sided.

onesided is a synonym for upper.

� � �
Graph �

graphbounds and graphbounds(graphopts) produce graphical output showing the stopping bound-
aries.

graphopts are the following:

xdiminformation labels the x axis with the information fraction unless information() is
specified, in which case information levels will be used. This is the default x-axis label.

xdimlooks labels the x axis with the number of each look.

noshade suppresses shading of the rejection, acceptance, and continuation regions of the graph.

rejectopts(area options) affects the rendition of the rejection region. See [G-3] area options.

acceptopts(area options) affects the rendition of the acceptance region. See
[G-3] area options.

continueopts(area options) affects the rendition of the continuation region. See
[G-3] area options.

efficacyopts(connected options) affects the rendition of the efficacy bound. See
[G-3] cline options and [G-3] marker options.

futilityopts(connected options) affects the rendition of the futility bound. See
[G-3] cline options and [G-3] marker options.

nolooklines suppresses the vertical reference lines drawn at each look.

looklinesopts(added line suboptions) affects the rendition of reference lines marking each
look. See suboptions in [G-3] added line options.

nofixed suppresses the fixed-study critical values in the plot.

fixedopts(marker options) affects the rendition of the fixed-study critical values. See
[G-3] marker options.

twoway options are any of the options documented in [G-3] twoway options, excluding by().
These include options for titling the graph (see [G-3] title options) and for saving the graph
to disk (see [G-3] saving option).

The following options are available with gsbounds but are not shown in the dialog box:

matlistopts(general options) affects the display of the matrix of boundaries. general options are
title(), tindent(), rowtitle(), showcoleq(), coleqonly, colorcoleq(), aligncol-
names(), and linesize(); see general options in [P] matlist. This option is seldom used.

https://www.stata.com/manuals/g-3area_options.pdf#g-3area_options
https://www.stata.com/manuals/g-3area_options.pdf#g-3area_options
https://www.stata.com/manuals/g-3area_options.pdf#g-3area_options
https://www.stata.com/manuals/g-3area_options.pdf#g-3area_options
https://www.stata.com/manuals/g-3area_options.pdf#g-3area_options
https://www.stata.com/manuals/g-3area_options.pdf#g-3area_options
https://www.stata.com/manuals/g-3cline_options.pdf#g-3cline_options
https://www.stata.com/manuals/g-3marker_options.pdf#g-3marker_options
https://www.stata.com/manuals/g-3cline_options.pdf#g-3cline_options
https://www.stata.com/manuals/g-3marker_options.pdf#g-3marker_options
https://www.stata.com/manuals/g-3added_line_options.pdf#g-3added_line_optionsOptionsSuboptions
https://www.stata.com/manuals/g-3added_line_options.pdf#g-3added_line_optionsOptionsSuboptions
https://www.stata.com/manuals/g-3added_line_options.pdf#g-3added_line_options
https://www.stata.com/manuals/g-3marker_options.pdf#g-3marker_optionsSyntax
https://www.stata.com/manuals/g-3marker_options.pdf#g-3marker_options
https://www.stata.com/manuals/g-3twoway_options.pdf#g-3twoway_options
https://www.stata.com/manuals/g-3title_options.pdf#g-3title_options
https://www.stata.com/manuals/g-3saving_option.pdf#g-3saving_option
https://www.stata.com/manuals/pmatlist.pdf#pmatlistGeneraloptions
https://www.stata.com/manuals/pmatlist.pdf#pmatlistGeneraloptions
https://www.stata.com/manuals/pmatlist.pdf#pmatlist
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optimopts control the iterative algorithm used to calculate stopping boundaries:

intpointsscale(#) specifies the scaling factor for the number of quadrature points used during
the numerical evaluation of stopping probabilities at each look. The default is intpointss-
cale(20). See Methods and formulas.

initinfo(initinfo spec) specifies either one or two initial values to be used in the iterative
calculation of the maximum information.

The syntax initinfo(#) is applicable when using classical group sequential boundaries (Pocock
bounds, O’Brien–Fleming bounds, and Wang–Tsiatis bounds), as well as with efficacy-only
stopping when using error-spending boundaries (error-spending Pocock-style efficacy bounds,
error-spending O’Brien–Fleming-style efficacy bounds, Kim–DeMets efficacy bounds, and
Hwang–Shih–de Cani efficacy bounds). The default is to use the information from a fixed study
design; see Methods and formulas.

The syntax initinfo(# #) is applicable when using error-spending group sequential boundaries
with futility stopping (error-spending Pocock-style bounds, error-spending O’Brien–Fleming-
style bounds, Kim–DeMets bounds, and Hwang–Shih–de Cani bounds). With this syntax, the
first and second numbers specify the lower and upper starting values, respectively, for the
bisection algorithm estimating the maximum information. The default is to use the information
from a fixed study design for the lower initial value and the information corresponding to a
Bonferroni correction for the upper initial value; see Methods and formulas. To specify just
the lower starting value, use initinfo(# .), and to specify just the upper starting value, use
initinfo(. #).

initscale(#) specifies the initial value to be used during the iterative calculation of scaling
factor C for classical group sequential boundaries (Pocock bounds, O’Brien–Fleming bounds,
and Wang–Tsiatis bounds). The default is to use the z-value corresponding to the specified
value of alpha(). See Methods and formulas.

infotolerance(#) specifies the tolerance for the bisection algorithm used in the iterative calcula-
tion of the maximum information of error-spending group sequential boundaries with futility stop-
ping (error-spending Pocock-style bounds, error-spending O’Brien–Fleming-style bounds, Kim–
DeMets bounds, and Hwang–Shih–de Cani bounds). The default is infotolerance(1e-6).
See Methods and formulas.

marquardt specifies that the optimizer should use the modified Marquardt algorithm when, at an
iteration step, it finds that H is singular. The default is to use a mixture of steepest descent
and Newton, which is equivalent to the difficult option in [R] ml.

technique(algorithm spec) specifies how the objective function is to be maximized. The fol-
lowing algorithms are allowed. For details, see Pitblado, Poi, and Gould (2024).

technique(bfgs) specifies the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm.

technique(nr) specifies Stata’s modified Newton–Raphson (NR) algorithm.

technique(dfp) specifies the Davidon–Fletcher–Powell (DFP) algorithm.

The default is technique(bfgs) when using classical group sequential boundaries (Pocock
bounds, O’Brien–Fleming bounds, and Wang–Tsiatis bounds) and also for the second opti-
mization step used to estimate the maximum information with efficacy-only stopping when
using error-spending boundaries (error-spending Pocock-style efficacy bounds, error-spending
O’Brien–Fleming-style efficacy bounds, Kim–DeMets efficacy bounds, and Hwang–Shih–de
Cani efficacy bounds). The default is technique(nr) for the sequential optimization steps
used to estimate critical values for error-spending boundaries. You can also switch between
two algorithms by specifying the technique name followed by the number of iterations. For

https://www.stata.com/manuals/adaptglossary.pdf#adaptGlossarydef_maxinfo
https://www.stata.com/manuals/rml.pdf#rml
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example, specifying technique(nr 10 bfgs 20) requests 10 iterations with the NR algorithm
followed by 20 iterations with the BFGS algorithm, and then back to NR for 10 iterations, and
so on. The process continues until convergence or until the maximum number of iterations is
reached.

iterate(#) specifies the maximum number of iterations. If convergence is not declared by the
time the number of iterations equals iterate(), an error message is issued. The default value
of iterate(#) is the number set using set maxiter, which is 300 by default.[

no
]
log requests an iteration log showing the progress of the optimization. The default is nolog.

trace adds to the iteration log a display of the current parameter vector.

gradient adds to the iteration log a display of the current gradient vector.

showstep adds to the iteration log a report on the steps within an iteration. This option was
added so that developers at StataCorp could view the stepping when they were improving the
ml optimizer code. At this point, it mainly provides entertainment.

hessian adds to the iteration log a display of the current negative Hessian matrix.

showtolerance adds to the iteration log the calculated value that is compared with the effective
convergence criterion at the end of each iteration. Until convergence is achieved, the smallest
calculated value is reported. shownrtolerance is a synonym of showtolerance.

Below, we describe the three convergence tolerances. Convergence is declared when the nrtol-
erance() criterion is met and either the tolerance() or the ftolerance() criterion is also
met.

tolerance(#) specifies the tolerance for the parameter vector. When the relative change in
the parameter vector from one iteration to the next is less than or equal to tolerance(),
the tolerance() convergence criterion is satisfied. The default is tolerance(1e-12).

ftolerance(#) specifies the tolerance for the objective function. When the relative change in
the objective function from one iteration to the next is less than or equal to ftolerance(),
the ftolerance() convergence is satisfied. The default is ftolerance(1e-10).

nrtolerance(#) specifies the tolerance for the scaled gradient. Convergence is declared when
gH−1g′ < nrtolerance(). The default is nrtolerance(1e-16).

nonrtolerance specifies that the default nrtolerance() criterion be turned off.

boundary
obfleming specifies a classical O’Brien–Fleming design for efficacy or futility bounds (O’Brien and

Fleming 1979). O’Brien–Fleming efficacy bounds are characterized by being extremely conservative
at early looks. The O’Brien–Fleming design is a member of the Wang–Tsiatis family and is
equivalent to specifying a boundary of wtsiatis(0).

pocock specifies a classical Pocock design for efficacy or futility bounds (Pocock 1977). Pocock
efficacy bounds are characterized by using the same critical value at all looks. The Pocock design is a
member of the Wang–Tsiatis family and is equivalent to specifying a boundary of wtsiatis(0.5).

wtsiatis(#) specifies a classical Wang–Tsiatis design for efficacy or futility bounds (Wang and
Tsiatis 1987). The shape of Wang–Tsiatis bounds is determined by parameter ∆ ∈ [−10, 0.7],
where smaller values of ∆ yield bounds that are more conservative at early looks.

errpocock specifies an error-spending Pocock-style design for efficacy or futility bounds (Lan and
DeMets 1983). The critical values from error-spending Pocock-style bounds are very similar to
those of classic Pocock bounds, but they are obtained using an error-spending function.

https://www.stata.com/manuals/rsetiter.pdf#rsetiter
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errobfleming specifies an error-spending O’Brien–Fleming-style design for efficacy or futility
bounds (Lan and DeMets 1983). The critical values from error-spending O’Brien–Fleming-style
bounds are very similar to those of classic O’Brien–Fleming bounds, but they are obtained using
an error-spending function.

kdemets(#) specifies an error-spending Kim–DeMets design for efficacy or futility bounds (Kim and
DeMets 1987). The shape of Kim–DeMets bounds is determined by power parameter ρ ∈ (0, 10],
where larger values of ρ yield bounds that are more conservative at early looks.

hsdecani(#) specifies an error-spending Hwang–Shih–de Cani design for efficacy or futility bounds
(Hwang, Shih, and de Cani 1990). The shape of Hwang–Shih–de Cani bounds is determined by
parameter γ ∈ [−30, 3], where smaller values of γ yield bounds that are more conservative at
early looks.

For a design with both efficacy and futility stopping boundaries, if you specify a classical boundary
(that is, in the Wang–Tsiatis family) for one, then you must specify a classical boundary for the
other. So, you could not specify a boundary in the Wang–Tsiatis family for one boundary and an
error-spending boundary for the other. When specifying efficacy and futility boundaries from the same
family, the efficacy parameter does not need to be the same as the futility parameter.

Boundaries that are conservative at early looks, such as the O’Brien–Fleming bound, offer little
chance of early stopping unless the true effect size is quite large (in the case of efficacy bounds) or
quite small (in the case of futility bounds). A trial employing a conservative bound is more likely
to continue to the final look, yielding an expected sample size that is not dramatically smaller than
the sample size required by an equivalent fixed-sample trial. However, the maximum sample size
(that is, the sample size at the final look) of a trial with a conservative bound is generally not much
greater than the sample size required by an equivalent fixed trial. Another direct result of specifying
conservative bounds is that the critical value at the final look tends to be close to the critical value
employed by an equivalent fixed design. In contrast, anticonservative boundaries such as the Pocock
bound offer a much better shot at early stopping (often yielding a small expected sample size) at the
cost of a larger maximum sample size and final critical values that are considerably larger than the
critical value of an equivalent fixed design.

Remarks and examples stata.com

Remarks are presented under the following headings:

Introduction
Examples

Efficacy stopping
Efficacy and futility stopping
Nonbinding futility bounds
One-sided tests
Error-spending bounds
Unevenly spaced looks
Futility-only stopping

This entry describes the gsbounds command and the methodology for calculating stopping
boundaries for GSDs. For a software-free introduction to GSDs, see [ADAPT] GSD intro; for an
introduction to Stata’s gs suite of commands, see [ADAPT] gs; and for associated sample-size
calculations, see [ADAPT] gsdesign.

http://stata.com
https://www.stata.com/manuals/adaptgsdintro.pdf#adaptGSDintro
https://www.stata.com/manuals/adaptgs.pdf#adaptgs
https://www.stata.com/manuals/adaptgsdesign.pdf#adaptgsdesign
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Introduction

Clinical trials, studies investigating the effects of a treatment on human participants, must address
ethical concerns that are often not considered when designing other types of experiments. These
ethical imperatives, such as not unnecessarily exposing participants to harmful or inferior treatments,
must be met while also meeting scientific needs (such as type I error and power) and financial realities
that can limit sample sizes.

In a classical fixed-sample design, an experiment of predetermined size is conducted and all data
are collected before analysis. This approach is efficient if the data are all collected at once, but in
the context of a large clinical trial, participants are typically enrolled over the course of months
or years and data about the clinical endpoint are collected bit by bit. In this scenario, GSDs offer
a tantalizing prospect: the ability to end a study early when preliminary data are overwhelmingly
favorable or unfavorable. Early stopping, without sacrificing type I error, is beneficial because it
saves resources and, more importantly, addresses the ethical need to avoid exposing participants to
suboptimal treatments unnecessarily.

In a GSD, a number of interim analyses, or looks, are conducted at prespecified points during the
collection of experimental data. At each look, the test statistic is calculated based on the data available
at the time, and it is compared with critical values defined by the efficacy and futility boundaries.
If the test statistic is more extreme than the critical values defined by the efficacy boundaries, then
H0 is rejected and the study is terminated early for efficacy. The complement to efficacy stopping is
futility stopping, and if the test statistic crosses the futility boundaries, then H0 is accepted and the
study is terminated early for futility. The concept of accepting H0, while taboo in many areas, is a
long-established practice in GSDs (see Origins of GSD in [ADAPT] GSD intro) and is often thought
of as “abandoning a lost cause” (Gould 1989). If H0 is neither rejected nor accepted after the interim
analysis, the trial continues until the next look.

Stata’s gsbounds command allows the calculation of stopping boundaries for efficacy and futility,
allows for both one-sided and two-sided tests, and implements the most popular boundary calculations.
In the examples that follow, the graphbounds option is used to visualize the boundaries. The boundaries
divide the range of possible test statistic values into regions: the rejection region, the acceptance
region, and the continuation region. If the test statistic falls within the rejection region, then H0

is rejected and the study is terminated due to treatment efficacy. If the test statistic lies within the
acceptance region, then H0 is accepted and the study is terminated due to futility. If the test statistic is
within the continuation region, the study proceeds as planned. Efficacy bounds separate the rejection
region from the continuation region, and futility bounds separate the acceptance region from the
continuation region. At the final look, there is no continuation region, and H0 must be accepted or
rejected.

https://www.stata.com/manuals/adaptglossary.pdf#adaptGlossarydef_fixdesign
https://www.stata.com/manuals/adaptglossary.pdf#adaptGlossarydef_endpoint
https://www.stata.com/manuals/adaptgsdintro.pdf#adaptGSDintroRemarksandexamplesOriginsofGSD
https://www.stata.com/manuals/adaptgsdintro.pdf#adaptGSDintro
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Examples

Efficacy stopping

Example 1: Two-sided Pocock efficacy bounds

Consider a two-sided test of the difference between two means with known standard deviations.
The standardized test statistic z follows a normal distribution, and we wish to test for efficacy at
five equally spaced looks using Pocock efficacy bounds. The familywise type I error allowed is 0.05,
while the desired power (at a prespecified clinically significant effect size) is 80%.

We use gsbounds to calculate and graph the stopping boundaries and compare them with those
of a fixed-sample trial. To calculate Pocock efficacy bounds, we specify the efficacy(pocock)
option, while the nlooks(5) option specifies five equally spaced looks (four interim analyses and
a final analysis). The alpha() and power() options are not specified, which leaves them at their
default values of alpha(0.05) and power(0.8).

. gsbounds, efficacy(pocock) nlooks(5)

Group sequential boundaries

Efficacy: Pocock

Study parameters:
alpha = 0.0500 (two-sided)
power = 0.8000

Info. ratio = 1.2286

Fixed-study crit. values = ±1.9600

Critical values and p-values for a group sequential design

Info. Efficacy
Look frac. Lower Upper p-value

1 0.20 -2.4132 2.4132 0.0158
2 0.40 -2.4132 2.4132 0.0158
3 0.60 -2.4132 2.4132 0.0158
4 0.80 -2.4132 2.4132 0.0158
5 1.00 -2.4132 2.4132 0.0158

Note: Critical values are for z statistics;
otherwise, use p-value boundaries.

gsbounds begins by displaying a summary of the α and power parameters used in the design,
followed by a table of stopping boundaries. To facilitate comparing the GSD with a fixed study design,
gsbounds also displays the fixed-study critical values and the information ratio, which is the ratio
of the sample size at the final look of a GSD to the sample size from a fixed study design.

Pocock efficacy bounds are characterized by using the same critical value at all looks. To maintain
a familywise type I error of 0.05, Pocock boundaries require that the z statistic reach or exceed
±2.413 at any look (which corresponds to a p-value of 0.0158) to reject H0. This is far larger than
the critical value of ±1.96 required by a fixed-sample test. Pocock bounds allow for the possibility
of very early stopping if the effect size is large, but if the study continues to the final look, it will
require approximately 22.9% more participants than an equivalently powered fixed design, as seen by
the information ratio of 1.229.

https://www.stata.com/manuals/adaptglossary.pdf#adaptGlossarydef_pocock
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To plot the bounds for visual inspection, we rerun the previous gsbounds command with the
graphbounds option.

. gsbounds, efficacy(pocock) nlooks(5) graphbounds
(output omitted )
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Parameters: α = .05 (two-sided), 1-β = .8
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Figure 1. Pocock efficacy bounds

The graph displays the bounds visually, dividing the range of possible z-values into continuation,
rejection, and acceptance regions. The vertical axis is the value of the z statistic, and the horizontal
axis is the information fraction, or the fraction of the total information that has been collected at
the time of the analysis. The information fraction is typically proportional to the sample size, except
in time-to-event studies, in which case it is proportional to the number of events observed. The
information fraction is reported in the Info. frac. column of the table above.

We progress from left to right in the graph as information is collected during the clinical trial. The
efficacy bounds, which separate the rejection and continuation regions, are drawn in blue and marked
with a dot at each look. Before the first look (that is, when the information fraction is < 0.2), it is
impossible to reject H0 because the data have not yet been analyzed, so all z-values fall within the
continuation region. Beginning with the first look, the range of z-values is divided into rejection and
continuation regions. Because we are conducting a two-sided test, the rejection region is made up of
two areas: z-values ≥ 2.413 and z-values ≤ −2.413.

At the first look, a z test is performed using the command ztest or ztesti, and z statistic
z1 is calculated; see [R] ztest. z1 is compared with the critical values of the efficacy bounds. If z1

lies in the rejection region above the efficacy upper bound or below the efficacy lower bound, the
null hypothesis is rejected and the trial is terminated early for treatment efficacy. Mathematically,
we would write that we reject H0 if z1 ≥ 2.413 or z1 ≤ −2.413. If z1 lies in the continuation
region between the upper and lower efficacy bounds, written as z1 ∈ (−2.413, 2.413), then the trial
continues.

https://www.stata.com/manuals/rztest.pdf#rztest
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Because Pocock efficacy bounds use the same critical values for each look, the procedure during
the second, third, and fourth looks will be the same. At the final look, there is no continuation region.
If |z5| < 2.413, then H0 is accepted, and if |z5| ≥ 2.413, then H0 is rejected.

The graph also includes points marking the critical values that would be used in an equivalently
powered fixed study design. These points appear at z-values of ±1.96, which give a type I error of
0.05 in a fixed design with a single analysis. Compared with the GSD, the analysis in the fixed design
occurs at an information fraction of 0.814. This is calculated as the inverse of the information ratio:
1/1.229 = 0.814.

At the fifth look, the critical values of the Pocock design are more extreme than the critical values
of the fixed design. If |z5| ∈ [1.96, 2.413), the researcher will be unable to reject H0, because they
used a Pocock design; they will likely regret not having chosen a fixed design, which would have
allowed them to reject H0 with the same z-value (and a smaller sample).

To avoid this uncomfortable situation, some researchers prefer to use O’Brien–Fleming boundaries,
which are demonstrated in the following example.

Example 2: Two-sided O’Brien–Fleming efficacy bounds

O’Brien–Fleming efficacy boundaries are extremely conservative at early looks and far less so at
later looks. The final critical values in an O’Brien–Fleming design are similar to those of a fixed
study design. Here we calculate O’Brien–Fleming efficacy bounds for the scenario described in the
previous example.

. gsbounds, efficacy(obfleming) nlooks(5) graphbounds

Group sequential boundaries

Efficacy: O’Brien--Fleming

Study parameters:
alpha = 0.0500 (two-sided)
power = 0.8000

Info. ratio = 1.0284

Fixed-study crit. values = ±1.9600

Critical values and p-values for a group sequential design

Info. Efficacy
Look frac. Lower Upper p-value

1 0.20 -4.5617 4.5617 0.0000
2 0.40 -3.2256 3.2256 0.0013
3 0.60 -2.6337 2.6337 0.0084
4 0.80 -2.2809 2.2809 0.0226
5 1.00 -2.0401 2.0401 0.0413

Note: Critical values are for z statistics;
otherwise, use p-value boundaries.

https://www.stata.com/manuals/adaptglossary.pdf#adaptGlossarydef_obf
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Figure 2. O’Brien–Fleming efficacy bounds

The O’Brien–Fleming design makes it difficult to reject H0 at early looks but easier at later looks.
At the first look, the critical values of ±4.562 correspond to a p-value of 0.000005, while the critical
values at the last look, ±2.04, correspond to a p-value of 0.0413. The information ratio of 1.028
indicates that the maximum sample size is only 2.8% larger than that of a fixed design.

In the graph, the efficacy bounds take the shape of a funnel with the opening to the left; the
continuation region shrinks as more information is collected. By the final look, the critical values of
the efficacy bounds are nearly the same as the critical values from a fixed study design. The fixed
design uses nearly the same amount of information as the final look of the O’Brien–Fleming design,
with the data analysis in the fixed design occurring at information fraction 1/1.028 = 0.97.

The procedure for interim analysis with O’Brien–Fleming bounds is equivalent to the procedure
we used with Pocock bounds, except that the critical values change from one look to the next. At the
first look, the continuation region is defined by |z1| < 4.562 and the rejection region by |z1| ≥ 4.562.
At the second look, the continuation region is defined by |z2| < 3.226 and the rejection region by
|z2| ≥ 3.226. The pattern continues until the fifth and final look, which has no continuation region. At
the fifth look, the acceptance region is defined by |z5| < 2.04 and the rejection region by |z5| ≥ 2.04.

Example 3: Two-sided Wang–Tsiatis efficacy bounds

Both Pocock and O’Brien–Fleming boundaries are special cases of a one-parameter family of
boundaries described by Wang and Tsiatis (1987). This family of boundaries is indexed by power
parameter ∆. Setting ∆ = 0.5 yields a Pocock boundary, whereas setting ∆ = 0 yields an O’Brien–
Fleming boundary. Wang–Tsiatis boundaries with ∆ ∈ (0, 0.5) offer a balance between the two
designs.

https://www.stata.com/manuals/adaptglossary.pdf#adaptGlossarydef_maxss
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We continue example 2, this time calculating Wang–Tsiatis efficacy bounds with power parameter
∆e = 0.25.

. gsbounds, efficacy(wtsiatis(0.25)) nlooks(5) graphbounds

Group sequential boundaries

Efficacy: Wang--Tsiatis, Delta = 0.2500

Study parameters:
alpha = 0.0500 (two-sided)
power = 0.8000

Info. ratio = 1.0718

Fixed-study crit. values = ±1.9600

Critical values and p-values for a group sequential design

Info. Efficacy
Look frac. Lower Upper p-value

1 0.20 -3.1941 3.1941 0.0014
2 0.40 -2.6859 2.6859 0.0072
3 0.60 -2.4270 2.4270 0.0152
4 0.80 -2.2586 2.2586 0.0239
5 1.00 -2.1360 2.1360 0.0327

Note: Critical values are for z statistics;
otherwise, use p-value boundaries.

-4

-3

-2

-1

1

2

3

4

0

z-
va

lu
e

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1
Information fraction

Stop for efficacy
(reject H0)
Stop for futility
(accept H0)
Continue
Efficacy
Fixed-study
critical values

Parameters: α = .05 (two-sided), 1-β = .8, ∆e = .25

Wang–Tsiatis efficacy

Figure 3. Wang–Tsiatis efficacy bounds, ∆=0.25

In addition to the values of α and power used to calculate the bounds, gsbounds now reports
the efficacy parameter for the Wang–Tsiatis bounds. The boundaries themselves are a compromise
between the two previous designs. The critical values at early looks are less conservative than those of
the O’Brien–Fleming design, making it more likely that a study with a positive result will be stopped
very early. At the first look, the critical values of ±3.194 correspond to a p-value of 0.0014, while
the second look critical values of ±2.686 correspond to a p-value of 0.0072. If the study continues
to its conclusion, the final critical values of ±2.136 correspond to a p-value of 0.0327.

https://www.stata.com/manuals/adaptglossary.pdf#adaptGlossarydef_wt
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The maximum required sample size is 7.2% larger than that of a fixed study, which means that data
analysis in a fixed study is conducted at information fraction 1/1.072 = 0.933. Looking at the graph,
we see that the funnel shape of the efficacy bounds is less pronounced than with the O’Brien–Fleming
efficacy bounds, but the general form is similar.

Efficacy and futility stopping

Example 4: Two-sided Wang–Tsiatis efficacy and futility bounds

Efficacy boundaries allow early stopping to reject H0, but in some cases, there is an ethical
argument for early stopping to accept H0, such as when the experimental treatment causes deleterious
side effects. If we can demonstrate that the experimental treatment is not significantly better than
a placebo, we can end the trial early and prevent participants from receiving a treatment that does
more harm than good. Even in the absence of harmful side effects, ending a trial early by accepting
H0 means that participants who would have been recruited into a “dead-end” study can instead be
recruited to test the next promising treatment.

We continue with the scenario of example 3, this time adding futility bounds to permit early
stopping to accept H0. We want to allow futility stopping, but we do not want to be hasty in
abandoning a treatment just because the very first results are not promising. To accomplish this, we
use an O’Brien–Fleming futility bound that creates a narrow acceptance region at early looks.

We specify a binding futility bound with futility() suboption binding. If the z statistic from
an interim analysis crosses a binding futility bound, the trial must be stopped for futility or else it
will risk exceeding the desired familywise type I error.

. gsbounds, efficacy(wtsiatis(0.25)) futility(obfleming, binding) nlooks(5)
> graphbounds

Group sequential boundaries

Efficacy: Wang--Tsiatis, Delta = 0.2500
Futility: O’Brien--Fleming, binding

Study parameters:
alpha = 0.0500 (two-sided)
power = 0.8000

Info. ratio = 1.1961

Fixed-study crit. values = ±1.9600

Critical values and p-values for a group sequential design

Info. Efficacy Futility
Look frac. Lower Upper p-value Lower Upper p-value

1 0.20 -3.0960 3.0960 0.0020 . . .
2 0.40 -2.6034 2.6034 0.0092 -0.3669 0.3669 0.7137
3 0.60 -2.3525 2.3525 0.0186 -1.0907 1.0907 0.2754
4 0.80 -2.1892 2.1892 0.0286 -1.6297 1.6297 0.1032
5 1.00 -2.0704 2.0704 0.0384 -2.0704 2.0704 0.0384

Note: Critical values are for z statistics; otherwise, use p-value
boundaries.
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Figure 4. Wang–Tsiatis efficacy and futility bounds

The table of boundary values includes columns for futility lower and upper bounds, but the futility
bounds for the first look are missing. This is because, to achieve the required significance level and
power, the futility lower bound at the first look would have been above the futility upper bound. As
such, the trial cannot be stopped for futility at the first look, and the futility bounds for this look are
reported as missing. If z1, the test statistic at the first look, lies within the continuation region of
(−3.096, 3.096), then the study will continue. If |z1| ≥ 3.096, then H0 is rejected and the trial is
stopped early for efficacy.

At the second look, there are three possibilities: If |z2| < 0.367, then H0 is accepted and the trial is
terminated for futility. If |z2| ≥ 2.603, then H0 is rejected and the trial is terminated due to treatment
efficacy. If |z2| ∈ [0.367, 2.603), then the trial continues. A similar procedure is followed at the third
and fourth looks, and by the fourth look, the continuation region has shrunk to |z4| ∈ [1.63, 2.189);
if |z4| < 1.63, the trial is terminated for futility, and if |z4| ≥ 2.189, the trial is terminated due to
efficacy.

At the final look of a GSD with both efficacy and futility boundaries, the efficacy critical values are
always the same as the futility critical values, and there is no continuation region. Here, if |z5| < 2.07,
H0 is accepted; otherwise, H0 is rejected. The sample size at the fifth look is 19.6% larger than that
of a fixed study design, but the ability to stop the trial early due to futility has increased the chance
that the trial will be terminated before the fifth look.

In the graph, we see the familiar funnel-shaped efficacy bounds, but now the futility bounds form
a truncated “inner wedge” inside the efficacy bounds. The critical values from an equivalent fixed
study design are similar to the critical values from the fifth look of the GSD, but the data analysis of
the fixed study occurs at information fraction 1/1.196 = 0.836.

Compared with the efficacy-only design of example 3 (which used the same significance level,
power, efficacy bound type, and efficacy parameter as this example), we see that adding futility
boundaries increases the maximum sample size from 107.2% to 119.6% of the fixed-study sample
size. What’s more, adding binding futility bounds has shrunk the efficacy critical values. Without
futility bounds, the efficacy critical values at the first and fifth looks were ±3.194 and ±2.136,
respectively (corresponding to p-values of 0.0014 and 0.033). The addition of binding futility bounds
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has decreased those efficacy critical values to ±3.096 and ±2.07, respectively (equivalent to p-values
of 0.002 and 0.038). Similar decreases in efficacy critical values are seen at the second, third, and
fourth looks as well.

This decrease is best understood by considering the case of a true null hypothesis and examining
the behavior of the two designs. In this case, the correct action would be to accept H0; it is a
type I error to reject H0. When the null hypothesis is true, each interim look in the efficacy-only
GSD presents the opportunity to continue the trial or to commit a type I error and mistakenly reject
H0. Only at the very last look do we have the option to correctly accept H0. In the trial with both
efficacy and futility bounds, we have more opportunities to correctly accept H0, making it less likely
that the trial will continue to later looks. If we were to use the same efficacy critical values as in
the efficacy-only design, the actual probability of committing a type I error would be lower than
the specified significance level, and the test would be conservative. By relaxing the efficacy critical
values, the desired significance level is achieved.

Nonbinding futility bounds

Example 5: Two-sided Wang–Tsiatis efficacy and nonbinding futility bounds

The binding futility bounds we used in example 4 come with the restriction that the trial must be
stopped if an interim analysis crosses the futility boundary. We can relax this requirement by removing
futility() suboption binding to calculate nonbinding futility bounds. We omit the graphbounds
option because the shape of this graph is nearly identical to that of the binding design.

. gsbounds, efficacy(wtsiatis(0.25)) futility(obfleming) nlooks(5)

Group sequential boundaries

Efficacy: Wang--Tsiatis, Delta = 0.2500
Futility: O’Brien--Fleming, nonbinding

Study parameters:
alpha = 0.0500 (two-sided)
power = 0.8000

Info. ratio = 1.2507

Fixed-study crit. values = ±1.9600

Critical values and p-values for a group sequential design

Info. Efficacy Futility
Look frac. Lower Upper p-value Lower Upper p-value

1 0.20 -3.1941 3.1941 0.0014 . . .
2 0.40 -2.6859 2.6859 0.0072 -0.4050 0.4050 0.6855
3 0.60 -2.4270 2.4270 0.0152 -1.1396 1.1396 0.2544
4 0.80 -2.2586 2.2586 0.0239 -1.6875 1.6875 0.0915
5 1.00 -2.1360 2.1360 0.0327 -2.1360 2.1360 0.0327

Note: Critical values are for z statistics; otherwise, use p-value
boundaries.

Examining the efficacy boundaries, we see that the critical values are identical to the efficacy
critical values from the efficacy-only design of example 3. This is because nonbinding futility bounds
do not affect the calculation of efficacy bounds.
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At the end of example 4, we saw that binding futility bounds reduced the chance of erroneously
rejecting a true null hypothesis because the trial is required to stop if the z statistic from an interim
analysis crosses the futility bound. This is not the case with nonbinding futility bounds, where the
experimenter can decide to continue the experiment even if the futility boundary is crossed.

Compared with the binding futility bounds of example 4, the nonbinding boundaries are slightly
wider and the information ratio is larger (1.251 for the nonbinding design versus 1.196 for the binding
design). The phenomenon of larger information ratios for designs with nonbinding futility bounds
than for designs with binding futility bounds holds true, in general, and can be considered a cost
associated with the increased flexibility offered by nonbinding designs.

One-sided tests

Example 6: One-sided O’Brien–Fleming efficacy bounds

The previous examples have all involved two-sided tests. When conducting a clinical trial of an
experimental treatment, the researcher usually has a good idea of whether the effect will be positive
or negative, but often two-sided tests are conducted to demonstrate impartiality. However, in some
cases, it may be of interest to consider a one-sided alternative hypothesis. Here we plan to conduct
a two-sample means test with a one-sided alternative hypothesis.

In example 2, we used a two-sided O’Brien–Fleming design with five equally spaced looks, a
significance level of 0.05, and a power of 0.8. Here we use a similar design, but we restrict ourselves to
a one-sided alternative hypothesis. This restricts the rejection region to positive values of a z statistic
that are larger than the efficacy upper bound.

In the two-sided design with a significance level of 0.05, under the null hypothesis, there is a 2.5%
probability that the observed z statistic is above the efficacy upper bound and a 2.5% probability that
it is below the efficacy lower bound. To design a comparable study using a one-sided test, we adopt
a significance level of 0.025 to match the efficacy upper bound of the two-sided design.

. gsbounds, alpha(0.025) efficacy(obfleming) nlooks(5) upper graphbounds

Group sequential boundaries

Efficacy: O’Brien--Fleming

Study parameters:
alpha = 0.0250 (upper one-sided)
power = 0.8000

Info. ratio = 1.0284

Fixed-study crit. value = 1.9600

Critical values and p-values
for a group sequential design

Info. Efficacy
Look frac. Upper p-value

1 0.20 4.5617 0.0000
2 0.40 3.2256 0.0006
3 0.60 2.6337 0.0042
4 0.80 2.2809 0.0113
5 1.00 2.0401 0.0207

Note: Critical values are for z statistics;
otherwise, use p-value boundaries.
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Figure 6. One-sided O’Brien–Fleming efficacy bounds

As expected, the efficacy upper bound for a one-sided design with significance level 0.025 is
identical to the efficacy upper bound in the two-sided design with significance level 0.05. The graph
of the one-sided bound is identical to the upper portion of the graph of the two-sided bound from
example 2.

The procedure for comparing test statistics to the boundary critical values is somewhat simpler
with a single bound: At the first through fourth looks, we reject H0 if the z statistic exceeds the
critical value; otherwise, we continue the experiment. At the final look, we reject H0 if z5 ≥ 2.04;
otherwise, we accept H0.

Error-spending bounds

Example 7: One-sided error-spending O’Brien–Fleming-style efficacy bounds

In example 6, we used a one-sided O’Brien–Fleming design with five equally spaced looks, a
significance level of 0.025, and a power of 0.8. O’Brien–Fleming efficacy bounds possess properties
that appeal to clinical trialists: The conservative critical values at early looks ensure that a trial is not
stopped very early unless the evidence against the null hypothesis is overwhelming, and the critical
values at the final look are nearly the same as those from a fixed study design, reducing the risk of
the group sequential trial being unable to reject H0 despite a final z statistic that would have resulted
in rejecting H0 under a fixed study design.

The large critical values at early looks correspond to a very small probability of committing
a type I error. Viewed from the perspective of the error-spending paradigm, we can say that the
O’Brien–Fleming design spends very little error at early looks, instead saving the error for later
looks. If we rerun the design from example 6, we can examine the cumulative type I error spent by
displaying returned matrix r(aspent).

https://www.stata.com/manuals/adaptglossary.pdf#adaptGlossarydef_errspend
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. gsbounds, alpha(0.025) efficacy(obfleming) nlooks(5) upper
(output omitted )

. matrix list r(aspent)

r(aspent)[5,1]
alpha spent:

per look
Look 1 2.537e-06
Look 2 .00062953
Look 3 .0044518
Look 4 .01279229
Look 5 .025

In the classical O’Brien–Fleming design, critical values are calculated directly, and the error spent
at each look is a product of those critical values. Boundaries cannot be modified while the trial is
underway because the critical value at each look depends on the critical values of all other looks. With
error-spending boundaries, the error spent at each look is determined by the error-spending function,
and the critical value is a product of the error spent. In this case, each critical value depends on the
total information to be collected and the error spent at previous looks, but not on the critical values
of future looks.

When Lan and DeMets (1983) developed the error-spending approach, they formulated an error-
spending function that approximates the error spent at each look by O’Brien–Fleming bounds.
By spending the type I error at nearly the same rate as the classic O’Brien–Fleming design, the
error-spending approximation attains critical values that are nearly the same as those of the classic
O’Brien–Fleming design.

Here we modify the design used in example 6 by specifying an efficacy boundary of errobfleming
to calculate error-spending O’Brien–Fleming-style bounds.

. gsbounds, alpha(0.025) efficacy(errobfleming) nlooks(5) upper graphbounds

Group sequential boundaries

Efficacy: Error-spending O’Brien--Fleming style

Study parameters:
alpha = 0.0250 (upper one-sided)
power = 0.8000

Info. ratio = 1.0247

Fixed-study crit. value = 1.9600

Critical values and p-values
for a group sequential design

Info. Efficacy
Look frac. Upper p-value

1 0.20 4.8769 0.0000
2 0.40 3.3570 0.0004
3 0.60 2.6803 0.0037
4 0.80 2.2898 0.0110
5 1.00 2.0310 0.0211

Note: Critical values are for z statistics;
otherwise, use p-value boundaries.
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Figure 7. One-sided error-spending O’Brien–Fleming-style efficacy bounds

The critical values of the error-spending O’Brien–Fleming-style bounds are very similar to those
of the classic O’Brien–Fleming design. Both start off conservatively at early looks and approach
the fixed-study critical value by the final look. The information ratio of both designs is also very
similar. At the final look, the classic O’Brien–Fleming design required 2.8% more information than
an equivalent fixed design, while the error-spending approximation requires 2.5% more.

Examining the graph, it is difficult to distinguish the difference between the shape of the error-
spending O’Brien–Fleming-style bounds and the classic O’Brien–Fleming bounds from example 6.

To see the cumulative type I error spent at each look, we examine r(aspent).

. matrix list r(aspent)

r(aspent)[5,1]
alpha spent:

per look
Look 1 5.389e-07
Look 2 .00039415
Look 3 .00380806
Look 4 .01221179
Look 5 .025

Unsurprisingly, we see that the error-spending O’Brien–Fleming-style design spends the allotted
α of 0.025 at nearly the same rate as the classic O’Brien–Fleming design.

Example 8: One-sided error-spending efficacy and futility bounds

Clinical trials using one-sided tests stand to benefit from futility stopping just as much as trials
using two-sided tests. Consider a trial with the one-sided alternative hypothesis that the mean of the
experimental group is less than the mean of the control group. We plan for three evenly spaced looks,
and we use error-spending bounds.
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We want an efficacy boundary that is conservative at early looks, so we choose Kim–DeMets
efficacy bounds with parameter ρe = 3, which yields bounds that are similar in shape to O’Brien–
Fleming bounds, if slightly less conservative at very early looks. To increase the chance that we can
accept the null hypothesis at the first look if the evidence supports H0, we want a futility boundary
that is less conservative at early looks. Selecting Hwang–Shih–de Cani futility bounds with parameter
γf = 1 accomplishes this by producing bounds that are similar in shape to Pocock bounds, and we
make the futility bound nonbinding so that stopping is not required if it is crossed at an interim
analysis. As in example 6, we use a significance level of 0.025, but here we specify the power to
be 0.9.

. gsbounds, alpha(0.025) power(0.9) efficacy(kdemets(3)) futility(hsdecani(1))
> nlooks(3) lower graphbounds

Group sequential boundaries

Efficacy: Error-spending Kim--DeMets, rho = 3.0000
Futility: Error-spending Hwang--Shih--de Cani, nonbinding, gamma = 1.0000

Study parameters:
alpha = 0.0250 (lower one-sided)
power = 0.9000

Info. ratio = 1.2315

Fixed-study crit. value = -1.9600

Critical values and p-values for a group sequential design

Info. Efficacy Futility
Look frac. Lower p-value Upper p-value

1 0.33 -3.1130 0.0009 -0.3798 0.3521
2 0.67 -2.4619 0.0069 -1.3016 0.0965
3 1.00 -2.0087 0.0223 -2.0087 0.0223

Note: Critical values are for z statistics; otherwise,
use p-value boundaries.
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Figure 8. One-sided lower error-spending efficacy and futility bounds

At the first look, the continuation region is the interval between the efficacy lower bound of
−3.113 and the futility upper bound of −0.38. If z1 > −0.38, then H0 may be accepted and the
trial terminated for futility; if z1 ≤ −3.113, then H0 is rejected and the trial is terminated due to
treatment efficacy. At the second look, the continuation region has shrunk to (−2.462,−1.302]. At
the third and final look, the critical values of the efficacy lower bound and the futility upper bound
coincide, and there is no continuation region: If z3 ≤ −2.009, then H0 is rejected; otherwise, it is
accepted.

If the study continues to the last look, the final critical value is very close to the critical value for
a fixed study design, but the GSD requires 23.1% more participants than a fixed design.

Unevenly spaced looks

Example 9: One-sided error-spending bounds with unevenly spaced looks

In example 8, we used a three-look GSD with evenly spaced information increments. Here we
consider a similar scenario, but we add a new look halfway between the first and second looks. To
specify four looks with uneven spacing, we use the information() option. Because information()
is automatically rescaled, we need not specify the final information level as 1, so we can type
information(1 1.5 2 3) to avoid repeating decimals.
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. gsbounds, alpha(0.025) power(0.9) efficacy(kdemets(3)) futility(hsdecani(1))
> information(1 1.5 2 3) lower graphbounds

Group sequential boundaries

Efficacy: Error-spending Kim--DeMets, rho = 3.0000
Futility: Error-spending Hwang--Shih--de Cani, nonbinding, gamma = 1.0000

Study parameters:
alpha = 0.0250 (lower one-sided)
power = 0.9000

Info. ratio = 1.2456

Fixed-study crit. value = -1.9600

Critical values and p-values for a group sequential design

Info. Efficacy Futility
Look frac. Lower p-value Upper p-value

1 0.33 -3.1130 0.0009 -0.3916 0.3477
2 0.50 -2.7889 0.0026 -0.7827 0.2169
3 0.67 -2.5133 0.0060 -1.2002 0.1150
4 1.00 -2.0120 0.0221 -2.0120 0.0221

Note: Critical values are for z statistics; otherwise,
use p-value boundaries.
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Figure 9. One-sided lower error-spending efficacy and futility bounds with unevenly spaced looks

The shape of the bounds is strikingly similar to the design in example 8, but the x axis of the
graph has been labeled using the scale we specified in the information() option. The properties of
the design, including the final critical value and the information ratio, are in line with the three-look
design, but the additional look gives us one more opportunity to terminate the trial early.
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Futility-only stopping

Example 10: One-sided error-spending Pocock-style futility bounds

The previous examples have all allowed early stopping due to efficacy, but occasionally only
futility stopping is desired. This can occur, for example, if there is concern about uncommon but
serious adverse events, which are harmful side effects of the treatment and negative medical outcomes
not associated with an underlying disease. In this case, even if the interim results offer compelling
evidence of treatment efficacy, the trial will continue in order to collect a sample large enough
to evaluate the pattern of adverse events. If the interim results are not promising, the trial can be
terminated early for futility.

Here critical values for the futility bounds are calculated for each look, but critical values for
the efficacy bounds are only calculated for the final look because H0 cannot be rejected until the
end of the study. As in example 7, we will design a study with five equally spaced looks, an
upper one-sided significance level of 0.025, and a power of 0.8. But we replace the error-spending
O’Brien–Fleming-style efficacy bound with a nonbinding error-spending Pocock-style futility bound.

. gsbounds, alpha(0.025) futility(errpocock) nlooks(5) upper graphbounds

Group sequential boundaries

Futility: Error-spending Pocock style, nonbinding

Study parameters:
alpha = 0.0250 (upper one-sided)
power = 0.8000

Info. ratio = 1.3060

Fixed-study crit. value = 1.9600

Critical values and p-values for a group sequential design

Info. Efficacy Futility
Look frac. Upper p-value Lower p-value

1 0.20 -0.1307 0.5520
2 0.40 0.5751 0.2826
3 0.60 1.1163 0.1321
4 0.80 1.5672 0.0585
5 1.00 1.9600 0.0250 1.9600 0.0250

Note: Critical values are for z statistics; otherwise,
use p-value boundaries.
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Figure 10. Error-spending Pocock-style nonbinding futility bound

At the first look, we are allowed, but not required, to accept H0 if z1 < −0.131; otherwise, the
trial continues. No efficacy critical value is reported for the first look because we cannot stop the
trial for efficacy at this point. This procedure is repeated at the second, third, and fourth looks, with
progressively larger futility critical values. At the fifth look, which is the only look with an efficacy
critical value, we reject H0 if z5 ≥ 1.96; otherwise, we accept H0.

The critical value at the fifth look is equal to the critical value from an equivalently powered fixed
study design. This is because a GSD with futility-only stopping offers a single opportunity to reject
H0 at the end of the study, just as a fixed design does. If we had specified binding futility bounds,
the critical value would have been even smaller than that of a fixed design. This is because, if the
null hypothesis is true, binding futility bounds reduce the probability of committing a type I error
because the trial can be forced to stop for futility before reaching the opportunity to reject H0 at the
final look. To avoid underspending the desired type I error in the presence of binding futility bounds,
efficacy critical values are reduced until the desired α level is reached.

On the graph, the efficacy bound is drawn as a single dot rather than a line because only the last
look uses an efficacy bound. The dot for the efficacy bound covers the final dot marking the final
futility bound because they share the same critical value.
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Stored results
gsbounds stores the following in r():

Scalars
r(alpha) overall significance level (familywise type I error)
r(beta) overall probability of a type II error
r(binding) 1 for binding futility bounds, 0 for nonbinding
r(effparam) efficacy parameter (if wtsiatis(), kdemets(), or hsdecani() specified)
r(futparam) futility parameter (if wtsiatis(), kdemets(), or hsdecani() specified)
r(info ratio) ratio of maximum information required to that of a fixed study design
r(nlooks) number of analyses
r(onesided) 1 for a one-sided test, 0 otherwise
r(power) overall power
r(stop) 0 for futility bounds, 1 for efficacy bounds, 2 for both
r(z fixed) critical value for an equivalent fixed study design

Macros
r(cmd) gsbounds
r(cmdline) command as typed
r(direction) upper, lower, or two-sided
r(effbnd) pocock, obfleming, wtsiatis, errpocock, errobfleming, kdemets, or hsdecani
r(futbnd) pocock, obfleming, wtsiatis, errpocock, errobfleming, kdemets, or hsdecani

Matrices
r(aspent) cumulative alpha spent per look (stored with efficacy-only stopping or when futility

bounds are binding)
r(aspent fstop) cumulative alpha spent per look if futility stopping does occur (stored when futility

bounds are nonbinding)
r(aspent nofstop) cumulative alpha spent per look if futility stopping does not occur (stored when futility

bounds are nonbinding)
r(bounds) stopping boundaries
r(bspent) cumulative beta spent per look (when futility bounds are specified)
r(info frac) information fraction
r(info level) specified information level
r(p crit) p-values corresponding to boundary critical values

Methods and formulas
Methods and formulas are presented under the following headings:

Group sequential bounds
Classical (Wang–Tsiatis) bounds
Error-spending bounds
Significance level approach

Group sequential bounds

After each group of observations is collected, an analysis is performed and the test statistic Z is
calculated. In the description that follows, we assume that Z follows a standard normal distribution
under H0. For test statistics that follow other distributions, the normal model is used to calculate
boundaries that are then converted to the appropriate scale using the significance level approach.

In a GSD with K looks, let (n1, . . . , nK) be the cumulative sample sizes at looks 1 through K,
with the maximum sample size of nK attained at the final look. For any k in (1, . . . ,K), let Ik
denote the information fraction at look k. This is the fraction of the maximum sample size that has
been observed, with Ik = nk/nK for k in (1, . . . ,K). For studies with time-to-event outcomes,
where information is proportional to the number of events observed, interpret nk to be the cumulative
number of events observed at stage k, and interpret nK to be the maximum number of events.
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Each test statistic Zk is calculated using all observations collected through look k. This cumulative
quality implies that (Z1, . . . , ZK) are not independent. Jennison and Turnbull (2000, 49) show that
(Z1, . . . , ZK) is multivariate normal with

Cov(Zj , Zk) =

√
Ij
Ik

for 1 ≤ j ≤ k ≤ K (1)

When (Z1, . . . , ZK) follow this distribution, the score statistics (S1, . . . , SK) that correspond to
these z statistics are said to have the property of “independent increments”. For any k in (1, . . . ,K),
Sk is equal to Zk multiplied by the square root of the Fisher information for the parameter involved
in the test. The independent increments property means that S1, (S2 − S1), . . . , (SK − SK−1) are
independently distributed.

Without loss of generality, consider a GSD for an upper one-sided test with both efficacy and
binding futility bounds. Denote critical values for efficacy stopping as (e1, . . . , eK) and critical values
for futility stopping as (f1, . . . , fK). At interim look k < K, if test statistic Zk ≥ ek, the trial is
stopped for efficacy; if Zk < fk, the trial is stopped for futility; and if fk ≤ Zk < ek, the trial
continues. At the final look, there is no continuation region because fK = eK .

Let αk and βk be the respective probabilities of type I and type II error at look k, and let
α =

∑K
k=1 αk and β =

∑K
k=1 βk be the overall probabilities of type I and type II error (with power

equal to 1− β). Using the result of Wassmer and Brannath (2016, 57), we write the probability of
type I error during the first and subsequent looks as

α1 = PrH0
(Z1 ≥ e1) and αk = PrH0

(
Zk ≥ ek∩

k−1⋂
j=1

fj ≤ Zj < ej

)
for k ∈ (2, . . . ,K) (2)

Similarly, the formula for the stagewise probability of type II error is

β1 = PrHa(Z1 < f1) and βk = PrHa

(
Zk < fk∩

k−1⋂
j=1

fj ≤ Zj < ej

)
for k ∈ (2, . . . ,K) (3)

where PrH0(·) indicates the probability under the null hypothesis and PrHa(·) indicates the probability
under the alternative hypothesis.

For trials with efficacy stopping only, replace (f1, . . . , fK−1) with −∞ and let fK = eK in
the calculations above. For trials with nonbinding futility bounds, replace (f1, . . . , fK−1) with −∞
in (2) but not in (3). For trials with futility stopping only, replace (e1, . . . , eK−1) with ∞ and let
eK = fK (in this case, stored result r(bounds) records interim efficacy critical values as .z). For
two-sided trials, replace all instances of Z with |Z| in (2), and replace Zj with |Zj | in (3).

To calculate the probabilities in (2) and (3), cumulative multivariate normal distributions are evaluated
with lower limit (f1, . . . , fK) and upper limit (e1, . . . , eK). Two-sided tests require additional
integration from (−e1, . . . ,−eK) to (−f1, . . . ,−fK). The covariance matrix of the distribution,
defined in (1), allows the multivariate normal integral to be decomposed into a series of univariate
integrals using the recursive integration formula of Armitage, McPherson, and Rowe (1969).

The integrals are approximated using Simpson’s rule, with quadrature points spaced closer together
toward the center of the distribution than at the tails, as per Jennison and Turnbull (2000, 349). The
number of quadrature points is 12r− 3, with r = 20 by default. Jennison and Turnbull (2000) report
that using r = 16 yields probabilities that are accurate to 10−6. The value of r can be set with
the intpointsscale(#) option. When integrating over narrow intervals, the number of quadrature
points is increased adaptively to ensure sufficient precision.

https://www.stata.com/manuals/adaptglossary.pdf#adaptGlossarydef_fisherinfo
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Classical (Wang–Tsiatis) bounds

Wang and Tsiatis (1987) developed a class of group sequential boundaries with shape parameter
∆. The Wang–Tsiatis family includes the classical bounds of Pocock (1977) and O’Brien and
Fleming (1979) as special cases. The Pocock boundary is equivalent to a Wang–Tsiatis design
with ∆ = 0.5, and the O’Brien–Fleming boundary is a Wang–Tsiatis design with ∆ = 0. The
implementation of classical boundaries pocock, obfleming, and wtsiatis() follows the work of
Pampallona and Tsiatis (1994), who extended the Wang–Tsiatis family of bounds to include futility
stopping.

To allow efficacy and futility bounds to use different parameters, we use the notation ∆e and ∆f .
We define efficacy critical value ek = C ∗ I∆e−1/2

k , where ∆e controls the shape of the efficacy
bounds and C is a scaling factor. At the final look, IK = 1, so eK = C. Futility critical value
fk = C ∗ I∆f−1/2

k +M1/2(I1/2
k − I∆f−1/2

k ), where M is the maximum information of the trial
and ∆f controls the shape of the futility bound. M can be thought of as a standardized version of
the Fisher information, scaled to equal the expected information at the final look of a group sequential
trial with an effect size of 1 under Ha. The expected information of an equivalent fixed-sample trial
is denoted as F . For a one-sided trial, F = {Φ−1(1 − α) + Φ−1(1 − β)}2, where Φ−1(·) is the
inverse standard normal cumulative distribution function. For a two-sided trial, α is replaced with
α/2.

Two-dimensional optimization is performed to find values of C and M that yield the desired
probabilities of type I and type II errors. The starting value for C can be specified with the
initscale(#) option. The default starting value for C is zα for one-sided trials and zα/2 for
two-sided trials, where zα = Φ−1(1 − α). The starting value for M can be specified with the
initinfo(#) option, and the default starting value for M is F . Other aspects of the optimization
process, such as the optimization technique and number of iterations, can be controlled by specifying
additional optimization options (see optimopts).

Let R represent the information ratio, the ratio of the maximum sample size of a Wang–Tsiatis
design to that of a fixed design with equivalent type I and type II error. We calculate R =M/F .

Error-spending bounds

Instead of calculating critical values ek directly, the error-spending approach defines an α-spending
function α∗(t). This function must be monotonically increasing over t ∈ [0, 1], and it must satisfy
α∗(0) = 0 and α∗(t) = α for t ≥ 1. The α-spending function is used to partition α into (α1, . . . , αK)
by setting α1 = α∗(I1) and αk = α∗(Ik)− α∗(Ik−1) for k in (2, . . . ,K).

Lan and DeMets (1983) proposed error-spending functions that closely approximate classi-
cal Pocock and O’Brien–Fleming bounds. The α-spending function for Pocock-style bounds is
α∗P(t;α) = min[α log{1 + (e − 1)t}, α]. The α-spending function for O’Brien–Fleming-style
bounds is α∗OBF(t;α) = min{2 − 2Φ(zα/2/

√
t), α} for one-sided bounds and α∗OBF(t;α) =

min{4− 4Φ(zα/4/
√
t), α} for two-sided bounds (Wassmer and Brannath 2016), where Φ(·) is the

standard normal cumulative distribution function.

Kim and DeMets (1987) introduced a single parameter family of error-spending functions indexed
by parameter ρ > 0, with α-spending function α∗KD(t; ρ, α) = min(αtρ, α). Another popular error-
spending function, proposed by Hwang, Shih, and de Cani (1990), uses parameter γ in α-spending
function

α∗HSD(t; γ, α) =

α(1− e−γt)/(1− e−γ) for γ 6= 0

αt for γ = 0
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The error-spending approach can also be used to spend type II error, with the resulting β-spending
function β∗(·) following rules analogous to those of the α-spending function. It is used to partition
β into β1 = β∗(I1) and βk = β∗(Ik)− β∗(Ik−1) for k in (2, . . . ,K).

For trials with efficacy stopping only, e1 = Φ−1(1 − α1) for a one-sided test and e1 =
Φ−1(1 − α1/2) for a two-sided test. The error spent at subsequent looks depends on the stopping
boundaries of the previous stages, so boundary values are found sequentially through numerical
optimization. A separate optimization step is then performed to determine the maximum information
M. The starting value for M can be specified with the initinfo(#) option. The default starting
value for M is F , the expected information from an equivalent fixed study design.

For trials allowing stopping for futility, calculation of the boundary critical values and maximum
information cannot be decomposed into separate optimization steps. In this case, a numerical search
for M is performed using the bisection method, and boundaries are recalculated at each step. The
tolerance for the bisection search can be specified with the infotol(#) option, and the default
value is infotol(1e-6). The lower starting value in the search for M can be specified with the
initinfo(# .) option, and the upper starting value can be specified as initinfo(. #). To specify
both lower and upper starting values, use syntax initinfo(# #), specifying first the lower starting
value and then the upper starting value. By default, the lower starting value for the bisection search
is F , and the upper starting value is the information required by a Bonferroni correction for repeated
hypothesis tests.

Regardless of whether stopping is for efficacy, futility, or both, rarely modified aspects of the
optimization process, such as the optimization technique and number of iterations, can be controlled
by specifying additional optimization options (see optimopts).

As with classical Wang–Tsiatis designs, the information ratio for error-spending designs is calculated
as R =M/F .

Significance level approach

The theory behind GSDs relies on the assumption that test statistics (Z1, . . . , ZK) follow a multi-
variate normal distribution with covariance specified in (1) and marginal standard normal distributions
under H0. The classic example is the difference of means between two normally distributed responses,
scaled by a known standard deviation. However, many common test statistics are asymptotically normal,
such as log odds-ratios and log-rank tests.

When the desired test does not produce an asymptotically normal test statistic, Pocock (1977)
suggests the significance level approach to approximately control errors in GSDs. Jennison and
Turnbull (2000, 80) and Wassmer and Brannath (2016, 103) advocate the use of this approximation,
describing it as “remarkably accurate” and “stupendously accurate”, respectively.

For test statistic Tk with cumulative distribution F (·) under H0, we calculate standardized test
statistic T ∗k = Φ−1{F (Tk)} that has the same significance level as Tk. That is, F (Tk) = Φ(T ∗k ). The
standardized test statistic T ∗k can be compared directly with critical values ek and fk. Equivalently,
we can calculate the p-value of test statistic Tk and compare it with the p-values corresponding to
ek and fk. The p-value technique is straightforward to implement and is demonstrated in examples 2
and 3 of [ADAPT] gsdesign onemean, example 2 of [ADAPT] gsdesign twomeans, and examples 2
and 3 of [ADAPT] gsdesign twoproportions.

The significance level approach can be used as long as the assumption of independent increments
is met. Many popular statistical tests satisfy this assumption; however, Jennison and Turnbull (2000)
provide several examples of scenarios where this assumption does not hold, even asymptotically. One
such example is the group sequential analysis of longitudinal data comparing the mean response of
two groups, where the within-subject response has an autoregressive element. The significance level
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approach does not justify the use of group sequential testing when the assumption of independent
increments is violated; it only applies when this assumption is satisfied but the test statistics are not
normally distributed.
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