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ERRATA and COMMENTS 

 4th Printing (Printed Sept, 2010) 

(updated to: 12 December, 2011) 
 

The 4th printing enhances Stata code to use version 11 rather than version 9-10 code. The book was 

completed before Stata version 11 was published. For example, when constructing synthetic data, the 

book now uses the new Stata pseudo-random number generators rather than the ones I created back 

in 1995 – the suite of rnd* commands -- or Roberto Gutierrez’s unpublished genbinomial command.  

   No more corrections to the text are planned for future printings. A second edition is planned to be 

published in 2013 and will include nested logistic regression, and chapters on latent class models and 

on Bayesian logistic models. Both single and multilevel models will be examined. Certain areas of 

the present edition will be re-written to assist in clarity  Any suggestions you have, or typos/errors 

you discover in the present printing of the first edition will be most appreciated.  

   Instructors may request a gratis 187-page Solutions Manual for Logistic Regression Models, 

Chapman & Hall/CRC,  ISBM: 978-1-4398-2066-7. Contact author for details (hilbe@asu.edu or 

jhilbe@aol.com). It is available from publisher, but I will need to give you added information.  

   NOTE: 4th Printing is found on page opposite the table of contents. The numbers on the line under 

"Printed in the United States of America..."  end with the number 4 -- the last number is the printing. 

Thanks to Zhehui Luo of the Michigan State Dept of Epidemiology and students in my courses on 

Logistic Regression and Advanced Logistic Regression for identifying remaining typos & errors. I 

have added comments and additions to the actual errata. The Comments section follows the Errata, 

beginning with page 3.  
 

Page xvii: Final full paragraph at the bottom of the page.  The books web site should now read: 

http://works.bepress.com/joseph_hilbe/ 

 

Page 1(bottom) page 2 (top): Starting from the sentence beginning with "First, the error term..." 

on the bottom line of Page 1, amend to  read: 

"First, the error terms are non-normally distributed. Second, the..." 

 

Page 18: The terms A*D/B*C near the bottom of the page: Change to small letters to read as: 

"The odds ratio is calculated by (a*d)/(b*c)  or (a/c)/(b/d)." 

 

Page 19: Near top of page: add "nolog" to first Stata command line under "MAXIMUM 

LIKELIHOOD LOGISTIC COMMAND". Read as: 

". logistic death anterior, nolog" 

 

Page 30,31: The comments to the right of the calculations of probabilities for each of the three 

non-reference Killip level. Delete the ending phrase for each, "with respect to KK1".  

 

 



Page 39:  The top Stata output in mid page: the term "ons" should read "_cons" 

 

Page 110  Eq 5.19   Close parentheses for both numerator an denominator. 

 

Page 118:  ">"  sign between RR and left side equation should be "=" 

 

Pages 120 and 128: The "///" symbols should be "//". 

 

Page 130  third word, “percent”, of the first full paragraph is misspelled. The sentence should 

read as:  “The 95 percent confidence interval of the attributable risk is given as” 

 

Page 132 third/fourth line under equation 5.40. Change sentence beginning with "Scaling 

replaces" to read as: 

"... Scaling replaces W by the product of the model standard error and square root of the Pearson 

dispersion statistic."   

Thus,                              scaled SE = se(βs) = se(β)*sqrt(Pdispersion). 

 

Page 133: Close space between rbinomial and (d,exb).  Read as gen by = rbinomial(d, exb) 

 

Page 172: R code: 9
th

 line from top of page.  Should read as: 
          

                 age2 <- ifelse(agegrp==’61-69’, 1,0) 

 

page 191:  Stata code near bottom of page: Replace "of" with "if" to read: 

 
. drop if class==4 

 

Page 215: Amend equations 6.11 and 6.12 so that there is a bracket on the 3
rd

 term of each 

 
      Variance = (r1-r0)

2 * V(1) + [x(r1-r0)]
2 * V(3) + 2x(r1-r0)

2 * CV(1,3)          (6.11)     
      SE   = sqrt[(r1-r0)

2 * V(1) + [x(r1-r0)]
2 * V(3) + 2x(r1-r0)

2 * CV(1,3)]          (6.12)     

 

Page 217:  The formula used to calculate a p-value near the bottom of the page is mistaken. See 

page 104 for explanation. The last Stata code and output on the page should read as: 

 
. di (1-normprob(1.404184))*2 

.16026407 

 

The corresponding R code is (for pages 239/240) 
 

> pnorm(1.40184, lower.tail=F)*2 

 

Page 219, Figure 6.4  Stata's graph commands have changed since first written. New code is: 

 
. scatter xb0 xb1 los, connect(l l) symbol(O d) xlabel(0 10 to 100) sort  

   l1title(Predicted logit) title(Interaction of White and LOS) 

 

 



Page 220, Figure 6.5 Stata's graph commands have changed since first written. New code is: 

 
. scatter yhat0 yhat1 los, connect(l l) symbol(O d) xlabel(0 10 to 100)  

   sort l1title(Predicted logit) title(Interaction of White and LOS) 

 

Page 227: 5 lines from the bottom, first term and number in line. "80" should read "90". 

. 

Page 259. Add sentence to the end of Section 7.3, just above 7.3.1 

"In general, BIC statistics give greater adjustment weight to the number of predictors in the 

model than does AIC. "  

 

Page 263: Section 7.3.3-7.3.5 to be amended to read as follows. Substitute the text between the 

double-double lines for what is now in the book. My apologies for the inconvenience.   

Delete the current section 7.3.3 LIMDEP AIC.  It is appropriate for normal models, not logistic 

models.   

 

=================================================================== 

=================================================================== 

7.3.3  Other AIC statistics 

 
There have been a number of AIC-type statistics developed since Akaike first constructed his 

information criterion in 1973. Two others that have found considerable use are both called 

corrected AIC statistics. The first was by Sigiura (1978), formulated as 

 

          
      

     
 

                                                                                                                                            (7.24) 

Simulation studies have shown it to have less bias than the AIC, and to perform better than AIC 

when n/p is small.  

   The second corrected version was by Bozdogan  (1987).  He defined the equation as  
 

                     
                                                                                                                                                        (7.25) 

Bozdogan criticized Akaike's original formulation of AIC due to the fact that it does not depend 

on sample size. Because of this he showed that it lacked the properties of asymptotic 

consistency.  Sigiura's definition addresses the same problem. Studies have demonstrated that 

     in particular is preferred to AIC for assessing comparative model fit. We use      instead 

for most of our comparative analyses. It appears to be able to select the best fitted model as well 

as the statistic with more terms..  

 
7.3.4 BAYESIAN INFORMATION CRITERION (BIC) 
 

The BIC statistic was first developed by Gideon E. Schwarz of Hebrew University, Jerusalem, in 

1978. His formulation was in response to Akaike's 1973 information criterion, whereby more 

weight is given to the number of predictors in the model. Schwarz also included a term for 



sample size, which all subsequent formulations of AIC or BIC after the original AIC have done. 

The philosophical basis of Schwarz's information criterion is Bayesian, unlike Akaike, but the 

resulting AIC and BIC equations have typically differed by only a term or so. The rationale for 

the two types of information criteria differ, but the resulting formulae are similar. The reasons 

for this go beyond the scope of this book. 

    Schwarz's Bayesian Information Criterion (BIC), also referred to as simply Schwarz Criterion 

in SAS output, is given as 

 

                                       BICS    =  -2LL + k*ln(n)                                               (7.26) 

 

The model with a lower BIC statistic is regarded as the  better fitted model.  The models being 

compared may be nested, but need not be.  The models may be of different sample sizes as well. 

Comparisons of treatment and control data are common applications of the BIC statistic.  

   For an example, we model the same predictors as before, but use the GLM logistic model. I 

follow estimation with a command called abic, which produces two AIC statistics and two BIC 

statistics. The AIC-BIC pair in the right column are the statistics that are commonly displayed 

following Stata maximum likelihood estimation. The Stata command, estat ic, displays these 

statistics to the screen.   

 
. glm death anterior hcabg kk2-kk4 age3 age4, nolog fam(bin) eform 

 

Generalized linear models                          No. of obs      =      4503 

Optimization     : ML                              Residual df     =      4495 

                                                   Scale parameter =         1 

Deviance         =  1276.319134                    (1/df) Deviance =   .283942 

Pearson          =  4212.631591                    (1/df) Pearson  =  .9371817 

 

Variance function: V(u) = u*(1-u)                  [Bernoulli] 

Link function    : g(u) = ln(u/(1-u))              [Logit] 

 

                                                   AIC             =  .2869907 

Log likelihood   = -638.1595669                    BIC             = -36537.86 

------------------------------------------------------------------------------ 

             |                 OIM 

       death | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

    anterior |   1.894096   .3173418     3.81   0.000     1.363922    2.630356 

       hcabg |   2.195519   .7744623     2.23   0.026     1.099711    4.383246 

         kk2 |   2.281692   .4117012     4.57   0.000     1.602024    3.249714 

         kk3 |   2.218199   .5971764     2.96   0.003     1.308708    3.759743 

         kk4 |   14.63984   5.218374     7.53   0.000     7.279897    29.44064 

        age3 |   3.549577   .7119235     6.32   0.000     2.395823    5.258942 

        age4 |   6.964847    1.44901     9.33   0.000     4.632573    10.47131 

------------------------------------------------------------------------------ 

 

. abic 

AIC Statistic =   .2869907             AIC*n      = 1292.3191 

BIC Statistic =   .2908262             BIC(Stata) = 1343.6191 

 

Notice that the model output includes an AIC and BIC statistic. The displayed BIC statistic is -

36537.86, which is different from Stata’s BIC which is displayed in the abic output --- with a 

value of 1343.6191. The value of AIC in the model output is the same as indicated by AIC*n.   

 

 



The model BIC is based on the Deviance definition, and is expressed as 

 

          BICR = D – df * ln(n)                                              (7.27) 

 

We may calculate it as follows, 
     
 

di 1276.319134 - 4495*ln(4503)   // LL - dof*ln(n) 

-36537.864 

         
which gives the same value as shown in the above model output. This version of BIC was 

specifically designed by the University of Washington’s Adrian Raftery in 1986 to be used with 

GLM software.  GLM algorithms generally base model convergence on the deviance function, 

and a few applications do not even estimate a log-likelihood function during the modeling 

process. The BICR statistic is given rather than Schwarz's statistics due to the GLM estimation 

environment. abic provides Schwarz's criterion, giving us both versions to be used for 

comparative analysis.  

   The BICS statistic may be calculated as  
 

. di -2*(-638.15957) + 8 * ln(4503) 

1343.6191 

 

which is identical to the value displayed in abic results. The abic right column statistics can be 
produced using Stata's  estat ic command.  
 

. estat ic 

 

----------------------------------------------------------------------------- 

       Model |    Obs    ll(null)   ll(model)     df          AIC         BIC 

-------------+--------------------------------------------------------------- 

           . |   4503           .   -638.1596      8     1292.319    1343.619 

----------------------------------------------------------------------------- 

               Note:  N=Obs used in calculating BIC; see [R] BIC note 

 

 

Raftery developed a table providing the degree of model preference based on the absolute 

difference between the BIC statistics of two models.  
 
   |difference|       Degree of preference 
   ----------------------------------------------- 
      0  -   2                 Weak 
      2  -   8                 Positive 
      6  - 10                 Strong  
         > 10                 Very Strong 
 
Models A and B:  
     If BICA – BICB  <  0,  then A preferred 
     If BICA – BICB  >  0,  then B preferred 
or 
     Model with lower BIC value preferred.  
 



For the example models we have worked with in this chapter, the reduced model has the following 
partial output.  
 

                                                   No. of obs      =      4503 

                                                   Residual df     =      4497 

                                                   AIC             =  .3074784 

Log likelihood   = -686.2875063                    BIC             = -36458.43 

 

. abic 

AIC Statistic =   .3074783             AIC*n      = 1384.5751 

BIC Statistic =   .3095883             BIC(Stata) = 1423.05 

 

The deviance based BIC statistics are         :   -36537.86  to -36458.43 

The log-likelihood based BIC statistics are:      1343.62  to     1423.05 
 
DEVIANCE 
. di -36537.86 –(-36458.43) 

-79.43 

 
LOG-LIKELIHOOD 
. di 1343.62  -  1423.05 

-79.43 

 

Both differences are identical. This relationships maintains for other nested models as well. In 

either case, however, the absolute difference between the full and reduced model is substantially 

greater than 10, indicating a very strong preference for the full model.  

 

The AIC and BIC statistics give us consistent advise. Both the AIC and BIC tests tell us that the 

full model is preferred.  

 

Recall that the true value of the AIC and BIC statistics rests in the fact that they can both 

compare non-nested models. For example, modeling the same data using the full model with a 

Bernoulli loglog link, the likelihood BIC statistic is 1335.4843. Compare this to the same 

statistic logit link value of 1343.6191. The difference is 8.13, in favor of the loglog link. This 

indicates that the loglog link is strongly preferred over the logit link.  

 

Note that the deviance statistic is used only for GLM-based statistical procedures. The log-

likelihood is the normal way to estimate all other maximum likelihood models. Most 

contemporary GLM algorithms have, though, a calculated log-likelihood function as part of the 

output, therefore the deviance-based formula is rarely used now.  
 
 

7.3.5  HQIC GOODNESS OF FIT STATISTIC 
 
The HQIC, or Hannan and Quinn Information Criterion (Hannan & Quinn,1979), is defined as  

 

                 HQIC  = -2{LL – k*ln(k))/n                                    (7.28) 
 
The calculated values for the nested models we have been discussing in this chapter are: 



 

. di -2*(-638.15957 -8*ln(8))/4503 

.29082616 

 

. di -2*(-686.28751 -6*ln(6))/4503  

.3095883 

 

The HQIC test is an alternate version of BIC, used in LIMDEP. If the values of the BIC and 

HQIC differ greatly, it is wise to check the models.  

 

It is vital to be certain you know which version of AIC and BIC is being used. Whatever the 

version, be consistent throughout the comparative evaluation of models.   

 

7.3.6  A Unified AIC Fit Statistic 
==================================================================== 

==================================================================== 

 

 

Page 272.  Equation 7.31,  Parentheses are needed for the denominator of the second term within 

brackets, y/(m*μ)). The equation should read as: 

 

d = +/- sqrt[2Σy * ln(y/(m*μ)) – (m –y)*ln((m – y)/(m*(1-μ))] 

 

Page 293. R code: 3
rd

 line from top.   

Use:                    library(PresenceAbsence)  

in place of:         library(epicalc) 
 

Page 299; Equation 8.14: the final term should read    
 
  . 

Page 300: Code in mid-page. Should read as: 
  2 =  (y-)2 / (*(1-/m))            
LL = { y*ln(/m)+(m-y)*ln(1-(/m))}   

 

Page 323:  Delete "/// a user authorized command"  near the top right of the page. 

 

Page 335: Delete the "]" at the end of the long line of Stata code in middle of page. 

 

Page 368:  Box 10.1:  the section on white should read as 
white:  The expected odds of being admitted to the hospital as an emergency patient is some 40 % less 
among those who identified themselves as white compared with those who identified themselves as 
non-white, holding the other predictors constant 

 

Page 376: Line immediately above Section 10.4: change words "a higher level" to "Emergency". 

 

Page 387: The first word, “The”, of the paragraph immediately under equation 11.9 is mistaken. 

The paragraph should start out as: 

“It is important to remember that the above parameterization is based  on set-“ 

 



Page 388:  the table about ¼ a page from the top has the 0 and 1 values in the wrong places. It 

should instead read as: 

                                                 Response 

                                                   0       1 

     ---------------- 

                       Predictor   0   |    A      B   | 

1   |    C      D   | 

     ---------------- 
           

If you find additional errata, please advise. I will post them to this Errata page in the future. Thank 

you to those who have identified typos. I will list your names in the second edition.  

 

REFERENCES 
p 621: Replace the current reference for Swartz, J to read as: 

Schwarz, G (1978). Estimating the dimension of a model, Annals of Statistics, Vol 6, 2:461-464. 
 

Add: 

Bozdogan, H. (1987). Model-selection and Akaike's information criterion (AIC): The 

general theory and its analytical extensions. Psychometrika, 52, 345-370. 

 

Sugiura, N (1978). Further analysis of the data by Akaike's information criterion and the finite 

corrections. Communications in Statistics. A 7, 13-26. 

 

COMMENTS 
 

Page 65: I probably should have added the formula for the second derivative of the Bernoulli link 

function under Equation 4.12.  

  

              
  

  
 
 

  
      

        
 

                                                                                                                                           (4.12a) 

Page 67: Table 4.1 provides a schematic algorithm for the estimation of a binary logistic model. I 

have provided full working code for estimating a generic logistic regression using Stata and R. I 

display the code and output below for each below the final Comment in this section. 

 

Page 132  Comment: In R, the glm quasibinomial family is the same as scaling the binomial 

logistic model standard errors by the Pearson dispersion statistic.   I recently discovered that the 

R vcov() function that is used by programmers for calculating standard errors in fact creates 

scaled standard errors.  This results in the SEs of models using sqrt(diag(vcov(modelname))) for 

calculating SEs to have different SEs from Stata, SAS, and other applications, particularly when 

the data is correlated. Dividing the displayed SEs by the square root of the Pearson dispersion 

statistic produces model SEs. R's glm() function, which is used for estimating both binary and 

grouped logistic models, adjusts SEs so that model SEs are displayed in the results.  

 



Page 300 Suggestion: the deviance function as presented is the standard one shown in texts. 

However, it does not work properly if used in an R GLM program. A much more simple and 

suitable expression for the equation, requiring less memory, is the following: 

 
 Dev = 2{y*ln(1/) + (m-y)*ln(1/(m-))} 

 
Joseph M Hilbe  

hilbe@asu.edu or jhilbe@aol.com  

 

STATA USER AUTHORED LOGIT COMMAND. First published in the November 

2005 issue of The American Statistician in a review of Stata. The review may be obtained from my 

BePress Selected Works site, http://works.bepress.com/joseph_hilbe/    

============================================================= 
*! version 1: LOGISTIC REGRESSION   :IRLS METHOD OF  ESTIMATION 

* Joseph Hilbe: TAS - Stata 9.0 review: 7Jul2005 

program define  jhlogit 

version 6 

set type double 

syntax  varlist(default=none) [if] [, EForm]   

gettoken y varlist : varlist 

if `"`if'"' != `""' { 

        preserve                /* ensure the dataset returns at end of pgm */ 

        keep `if'                /* retain only estimation sample */ 

} 

if "`eform'" !=  "" { local eform "eform(Odds Ratio)" } 

qui  { 

tempvar mu eta u w z dev oldev llike chi2 aic  bic 

* INITIALIZATION OF MU AND ETA 

count 

local nobs =  _result(1) 

gen `mu' = (`y' +  0.5)/2 

gen `eta' = ln(`mu'/(1-`mu')) 

* VARIABLE  INITIALIZATION 

local i      1 

gen `u'     =0 

gen `w'     =0 

gen `z'     =0 

gen `dev'  =1 

gen `oldev'=1 

gen `chi2'  =1 

local ddev  1 

* IRLS SCORING 

while (abs(`ddev')> 1e-6 ) { 

replace  `u' = (`y'-`mu')/(`mu'*(1-`mu')) 

replace  `w' = `mu'*(1-`mu') 

replace `z' = `eta'  + `u' 

regress `z' `varlist' [iw=`w'], mse1  dep(`y') 

drop  `eta' 

predict  `eta' 

replace `mu'   =  1/(1+exp(-`eta')) 

replace `oldev'=  `dev' 

replace `dev'  = ln(1/`mu')  if `y'==1 

replace `dev' =   ln(1/(1-`mu')) if `y'==0 



replace  `dev'  = sum(`dev') 

replace  `dev'  = 2*`dev'[_N] 

local  ddev     = `dev' -  `oldev' 

local  i        = `i'+1 

} 

local npred =  _result(3)               /* number of predictors */ 

local df    = `nobs' - `npred' -  1    /* degrees of freedom   */ 

* CALCULATION OF  LOG-LIKELIHOOD AND GOF STATISTICS  

egen `llike' =  sum(`y'*ln(`mu')+(1-`y')*ln(1-`mu')) 

gen `aic' = (-2*`llike' +  2*`npred')/`nobs'           //    AIC/observations 

} 

* PUT VALUES INTO MATRIX 

qui regress, noheader `eform' 

tempname b  V 

mat `b' =  get(_b)           /*  coefficient vector */ 

mat `V' =  get(VCE)          /*  variance-covariance matrix */ 

mat post `b' `V', depname(`y')  obs(`nobs') 

* OUTPUT 

di " " 

di in gr "Logistic  Estimates" 

mat mlout, `eform' 

di in gr _col(1) "Observations = " in  ye `nobs' in gr _col(53) "Deviance     =   " in ye  `dev' 

di in gr _col(53) "Loglikelihood = "  in ye `llike' 

di in gr  _col(1)  "AIC Statistic =  " in ye `aic' 

set type double 

end 

=================================================================== 

 

USE OF COMMAND 
 

. use medpar           /* dataset explained in text, Ch 5.11; p. 159 */ 

 

. jhlogit died hmo white 

  

Logistic  Estimates 

------------------------------------------------------------------------------ 

        died |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

         hmo |  -.0122465   .1489251    -0.08   0.934    -.3041342    .2796413 

       white |   .3033872   .2051795     1.48   0.139    -.0987573    .7055318 

       _cons |  -.9261862   .1973903    -4.69   0.000    -1.313064   -.5393082 

------------------------------------------------------------------------------ 

Observations = 1495                                 Deviance     =   1920.602 

                                                    Loglikelihood = -960.301 

AIC Statistic =  1.2873592 

 

 

R -- Bernoulli or binary logistic regression  - 
============================================================================== 
# BINARY LOGISTIC REGRESSION. BASIC FUNCTION   7 July, 2011 

# From: Hilbe, J.M and A.P Robinson (2012), Methods of Statistical Model  

#    Estimation, Chapman & Hall/CRC 

irls_logit <- function(formula, data, tol=.000001) {  # irls_logit options 

  mf <- model.frame(formula, data)              # define model frame as mf 

  y <- model.response(mf, "numeric")            # set model response as y 

  X <- model.matrix(formula, data = data)       # predictors in matrix X 



  if (any(is.na(cbind(y, X)))) stop("Some data are missing.") 

  mu <- (y + .5)/2                              # initialize μ                           

  eta <- log(mu/(1-mu))                         # initialize η               

  dev <- 2 * sum( y*log(1/mu) + (1 - y)* log(1/(1-mu)) ) 

  deltad <- 1                                   # initialize deltad = 1 

  i <- 1                                          # initialize i=1 

  while (abs(deltad) > tol ) {                    # IRLS loop begin 

    w <-  mu*(1-mu)                               # weight 

    z <- eta + (y - mu)/w                         # working response 

    mod <- lm(z ~ X-1, weights=w)                 # weighted regression 

    eta <- mod$fit                                # linear predictor 

    mu <- 1/(1+exp(-eta))                         # fitted value; probability  

    dev.old <- dev                                # setup for convergence 

    dev <- 2 * sum( y*log(1/mu) + (1 - y)* log(1/(1-mu)) ) # deviance 

    deltad <- dev - dev.old                       # test of 2 iterations 

    cat(i, coef(mod), deltad, "\n")               # iteration log 

    i <- i + 1                                    # recalibrate iter number 

  } 

    beta <- mod$coef                             # save coefficients 

    pr <- sum(residuals(mod, type="pearson")^2)  # calc Pearson disp 

    prdisp <- pr/mod$df.residual 

    return(list(coef = coef(mod),                # coef & SE display 

            se = sqrt(diag(vcov(mod)))/ sqrt(prdisp)))   

} 

=============================================================================== 
 

 

USE -- how source() is defined is based on where irls_logit.r is stored on your computer. It will 

be a function in the msme library later in 2011 (download fom CRAN).  

   Coefficients and model standard errors are displayed. Confidence Intervals, Z statistic, and p-

values can be easily calculated. Note that the scaled SEs calculated by  vcov() are amended to 

produce true model SEs.  

   NOTE: A complete description of OLS, IRLS, maximum likelihood, EM, quadrature, 

simulation, and other major methods of estimation can be found in Hilbe, Joseph M. and 

Andrew P. Robinson (2012), Methods of Statistical Model Estimation, 

Chapman & Hall/CRC. The irls_logit function is fully described as an example of IRLS 

estimation. Other more complex IRLS models are also discussed. In addition, we created a glm-

like function called irls, which corrects what we believe to be shortcomings in glm() and 

glm.nb(), describing its modular logic the specifics of the code. After the msme library is loaded, 

irls() will be able to be used like glm() is now, together with a summary() function. irls(), 

however, provides a much more extensive list of post-estimation statistics.  
 

> library(COUNT)  # Package associated with my Negative Binomial Regression 

> source("c://rfiles/irls_logit.r")    # locate where function is saved 

> data(medpar) 

 

> i.logit <- irls_logit(died ~ hmo + white, data=medpar) 

1 -1.051936 -0.01343265 0.318181 1064.628                  # iteration log 

2 -0.9224268 -0.01216259 0.3017145 -4.193304  

3 -0.9261831 -0.01224641 0.3033848 -0.001737683  

4 -0.9261862 -0.01224648 0.3033872 -3.808509e-10  

 



COEFFICIENTS and STANDARD ERRORS 
> i.logit 

X(Intercept)         Xhmo       Xwhite      

 -0.92618620  -0.01224648   0.30338724 

 

$se 

X(Intercept)         Xhmo       Xwhite  

   0.1973903    0.1489251    0.2051795 

 

LOWER 95% CONFIDENCE INTERVAL 
> i.logit$coef - 1.96*i.logit$se 

X(Intercept)         Xhmo       Xwhite  

 -1.31346050  -0.30443326  -0.09916926 

 

UPPER 95% CONFIDENCE INTERVAL 
> i.logit$coef + 1.96*i.logit$se 

X(Intercept)         Xhmo       Xwhite  

  -0.5389119    0.2799403    0.7059437 

 

The Z-statistic and P-values may be easily calculated from the above, but the confidence intervals 

will indicate if a predictor is significant as well. When odds ratios are displayed, exp(i.logit$coef), 

recall that the standard errors are determined using the delta method, which in this case is quite 

simple:  exp(β)*se(β); ie.  

                                      ORse <- exp(i.logit$coef)* i.logit$se.   

See page 35 in text.  
 

Also of possible interest to readers, James Hardin and I have finished writing the third edition of 

Generalized Linear Models and Extensions (Stata Press) [GLME3]. We are now working on  the 

second edition of Generalized Estimating Equations (Chapman & Hall/CRC) [GEE2]. I expect 

GLME3 to be published about December 15 (2011) We do not have a due date for GEE2, but 

intend to complete it before Christmas of this year. I am also working on a book with Justine 

Shults titled Quasi-Least Squares Regression: Extended GEE methodology (Chapman & 

Hall/CRC). It was begun in 2007 and should be completed in early 2012. I discuss QLS and 

mention the book in LRM (pages 470-480). Also, as mentioned above Andrew Robinson and I 

are working on Methods of Statistical Model Estimation (Chapman & Hall/CRC). It should be 

finished about March 1, 2012. I am contracted to write other books as well, but will not begin on 

them until the above are completed.  

 

Thanks to Dongjae Jung for identifying several typos 4 November, 2011.  


